Trojan attacks on deep neural networks (DNNs) exploit a backdoor embedded in a DNN model to hijack any input with an attacker's chosen signature trigger. All emerging defence mechanisms are only validated on vision domain tasks (e.g., image classification) on 2D Convolutional Neural Network (CNN) model architectures; whether a defence mechanism is general across vision, text, and audio domain tasks remains unclear. This work corroborates a run-time Trojan detection method exploiting STRong Intentional Perturbation of inputs, is a multi-domain Trojan detection defence across Vision, Textand Audio domains-thus termed as STRIP-ViTA. Specifically, STRIP-ViTA is the first confirmed Trojan detection method that is demonstratively independent of both the task domain and model architectures. We have extensively evaluated the performance of STRIP-ViTA over: i) CIFAR10 and GTSRB datasets using 2D CNNs, and a public third party Trojaned model for vision tasks; ii) IMDB and consumer complaint datasets using both LSTM and 1D CNNs for text tasks; and speech command dataset using both 1D CNNs and 2D CNNs for audio tasks. Experimental results based on 28 tested Trojaned models demonstrate that STRIP-ViTA performs well across all nine architectures and five datasets. In general, STRIP-ViTA can effectively detect Trojan inputs with small false acceptance rate (FAR) with an acceptable preset false rejection rate (FRR). In particular, for vision tasks, we can always achieve a 0% FRR and FAR. By setting FRR to be 3%, average FAR of 1.1% and 3.55% are achieved for text and audio tasks, respectively. Moreover, we have evaluated and shown the effectiveness of STRIP-ViTA against a number of advanced backdoor attacks whilst other state-of-the-art methods lose effectiveness in front of one or all of these advanced backdoor attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.