Zinc oxide (ZnO) films are prepared on n-Si substrates by means of radio frequency (RF) magnetron sputtering method. The influences of substrate temperature on the crystal orientation and crystalline structure of ZnO films are investigated by X-ray diffraction (XRD) and Raman spectroscopy. The surface morphologies are studied by scanning electron microscope (SEM). It is indicated that ZnO films with wurtzite structure were successfully prepared. When the substrate temperature reduced to 100°C, the wurtzite structure with highly preferred orientation along the (002) plane of the ZnO film is prepared and the elliptical shape particles distributed uniformly on the ZnO film surface. The higher substrate temperature can offer more kinetic energy for mobility of particle on the surface to achieve other crystalline growth, resulting in the highly c-axis-oriented crystalline structure is destroyed.
Zinc oxide (ZnO) films were prepared on Si substrates and then aluminum nitride (AlN) films were deposited on ZnO films by radio frequency (RF) magnetron sputtering. The crystal orientation, crystallite structure and surface morphology of AlN/ZnO films were characterized by X-ray diffraction (XRD), Raman spectrum and scanning electron microscopy (SEM). It was indicated that the AlN films were closely deposited on the ZnO film and had good crystallinity. Moreover, about 1μm-sized crystal particles with high c-axial orientation distributed uniformly on the AlN/ZnO film surface. It was indicated that ZnO could be a promising candidate as buffer layer for preparation of AlN thin films.
Phase transition of CaB6 sample under high pressure was studied by in situ electrical conductivity measurements and synchrotron X-ray diffraction up to 26GPa. Three anomalies in conductivity change were found respectively at 3.7, 12.4 and 21.9GPa. X-ray diffraction reveals that CaB6 transforms from Pm3m to orthogonal structure at 12.32GPa and hence the abnormal conductivity change at 12.4GPa can be attributed to the structural phase transition. The other two anomalies were considered as pressure-induced electronic phase transition in the pressure range of our measurements.
An effective and convenient method about molybdenum metal thin film microcircuit was developed on diamond anvil cell(DAC) under high pressure. Alumina film was used as the protective layer and sputtered on DAC. By using this method, we studied the electrical resistance variation about nanoparticles ZnS power up to 36GPa. The reversible phase transition had been reflected clearly by the electrical resistance measurements with sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.