A chameleon under pressure: The observed piezochromic behavior of the title compound (BP2VA) was found to depend on its molecular aggregation state and specifically on the strength of the π–π interaction between the anthracene rings of adjacent molecules. When BP2VA is ground or placed under pressure, its molecular aggregation state changes, and a red shift in the fluorescence emission from green via orange to red occurs (see picture).
Cross dipole stacking based on a novel fluorescent molecule, 9,10-bis (2,2-diphenylvinyl) anthracene (BDPVA), is presented. The butterfly-like structure of BDPVA is the key feature to form the unique aggregation structure and such a stacking mode is highly beneficial for fluorescence emission, resulting in high-performance amplified spontaneous emission and electroluminescence of BDPVA.
Euphorbiaceae plants are important as suppliers of biodiesel. In the current study, the codon usage patterns and sources of variance in chloroplast genome sequences of six different Euphorbiaceae plant species have been systematically analyzed. Our results revealed that the chloroplast genomes of six Euphorbiaceae plant species were biased towards A/T bases and A/T-ending codons, followed by detection of 17 identical high-frequency codons including GCT, TGT, GAT, GAA, TTT, GGA, CAT, AAA, TTA, AAT, CCT, CAA, AGA, TCT, ACT, TAT and TAA. It was found that mutation pressure was a minor factor affecting the variation of codon usage, however, natural selection played a significant role. Comparative analysis of codon usage frequencies of six Euphorbiaceae plant species with four model organisms reflected that Arabidopsis thaliana, Populus trichocarpa, and Saccharomyces cerevisiae should be considered as suitable exogenous expression receptor systems for chloroplast genes of six Euphorbiaceae plant species. Furthermore, it is optimal to choose Saccharomyces cerevisiae as the exogenous expression receptor. The outcome of the present study might provide important reference information for further understanding the codon usage patterns of chloroplast genomes in other plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.