In this work we present an automatic algorithm to detect basic shapes in unorganized point clouds. The algorithm decomposes the point cloud into a concise, hybrid structure of inherent shapes and a set of remaining points. Each detected shape serves as a proxy for a set of corresponding points. Our method is based on random sampling and detects planes, spheres, cylinders, cones and tori. For models with surfaces composed of these basic shapes only, e.g. CAD models, we automatically obtain a representation solely consisting of shape proxies. We demonstrate that the algorithm is robust even in the presence of many outliers and a high degree of noise. The proposed method scales well with respect to the size of the input point cloud and the number and size of the shapes within the data. Even point sets with several millions of samples are robustly decomposed within less than a minute. Moreover the algorithm is conceptually simple and easy to implement. Application areas include measurement of physical parameters, scan registration, surface compression, hybrid rendering, shape classification, meshing, simplification, approximation and reverse engineering.
a b s t r a c tWe present an automatic approach for the reconstruction of parametric 3D building models from indoor point clouds. While recently developed methods in this domain focus on mere local surface reconstructions which enable e.g. efficient visualization, our approach aims for a volumetric, parametric building model that additionally incorporates contextual information such as global wall connectivity. In contrast to pure surface reconstructions, our representation thereby allows more comprehensive use: first, it enables efficient high-level editing operations in terms of e.g. wall removal or room reshaping which always result in a topologically consistent representation. Second, it enables easy taking of measurements like e.g. determining wall thickness or room areas. These properties render our reconstruction method especially beneficial to architects or engineers for planning renovation or retrofitting. Following the idea of previous approaches, the reconstruction task is cast as a labeling problem which is solved by an energy minimization. This global optimization approach allows for the reconstruction of wall elements shared between rooms while simultaneously maintaining plausible connectivity between all wall elements. An automatic prior segmentation of the point clouds into rooms and outside area filters large-scale outliers and yields priors for the definition of labeling costs for the energy minimization. The reconstructed model is further enriched by detected doors and windows. We demonstrate the applicability and reconstruction power of our new approach on a variety of complex real-world datasets requiring little or no parameter adjustment.
Content based 3D shape retrieval for broad domains like the World Wide Web has recently gained considerable attention in Computer Graphics community. One of the main challenges in this context is the mapping of 3D objects into compact canonical representations referred to as descriptors, which serve as search keys during the retrieval process. The descriptors should have certain desirable properties like invariance under scaling, rotation and translation. Very importantly, they should possess descriptive power providing a basis for similarity measure between three-dimensional objects which is close to the human notion of resemblance.In this paper we advocate the usage of so-called 3D Zernike invariants as descriptors for content based 3D shape retrieval. The basis polynomials of this representation facilitate computation of invariants under the above transformations. Some theoretical results have already been summarized in the past from the aspect of pattern recognition and shape analysis. We provide practical analysis of these invariants along with algorithms and computational details. Furthermore, we give a detailed discussion on influence of the algorithm parameters like type and resolution of the conversion into a volumetric function, number of utilized coefficients, etc. As is revealed by our study, the 3D Zernike descriptors are natural extensions of spherical harmonics based descriptors, which are reported to be among the most successful representations at present. We conduct a comparison of 3D Zernike descriptors against these regarding computational aspects and shape retrieval performance.
We present a new geometry compression method for animations, which is based on the clustered principal component analysis (CPCA). Instead of analyzing the set of vertices for each frame, our method analyzes the set of paths for all vertices for a certain animation length. Thus, using a data-driven approach, it can identify mesh parts, that are "coherent" over time. This usually leads to a very efficient and robust segmentation of the mesh into meaningful clusters, e.g. the wings of a chicken. These parts are then compressed separately using standard principal component analysis (PCA). Each of this clusters
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.