Trichinella spp., are amongst the most widespread parasitic nematodes, primarily live in the muscles of a wide range of vertebrate animals and humans. Human infection occurs by ingestion of raw or undercooked meat containing Trichinella larvae. Accurate diagnosis of Trichinella spp. infection in domestic animals is crucial for the effective prevention and control of human trichinellosis. In the present study, a simple, rapid and accurate diagnostic assay was developed combining recombinase polymerase amplification and a lateral flow strip (LF-RPA) to detect Trichinella spp. infection. The LF-RPA assay targets Trichinella spp. mitochondrial small-subunit ribosomal RNA (rrnS) gene and can detect as low as 100 fg DNA of Trichinella strains, which was approximately 10 times more sensitive than a conventional PCR assay. The LF-RPA assay can be performed within 10–25 min, at a wide range of temperatures (25–45°C) and showed no cross-reactivity with DNA of other parasites and related host species of Trichinella. The performance of the LF-RPA assay in the presence of high concentration of PCR inhibitor was better than that of a conventional PCR assay. Results obtained by LF-RPA assay for the detection of experimentally infected mice were comparable to the results obtained by using a conventional PCR, achieving 100% specificity and high sensitivity. These results present the developed LF-RPA assay as a new simple, specific, sensitive, rapid and convenient method for the detection of Trichinella infection in domestic animals.
Trichinella spiralis, the causative agent of trichinellosis, is able to infect a wide range of carnivores and omnivores including human beings. In the past 30 years, a mass of vaccination efforts has been performed to control T. spiralis infection with the purpose of reduction in worm fecundity or decrease in muscle larval and adult burdens. Here, we summarize the development of veterinary vaccines against T. spiralis infection. During recent years, increasing numbers of new vaccine candidates have been developed on the protective immunity against T. spiralis infection in murine model. The vaccine candidates were not only selected from excretory-secretory (ES) antigens, but also from the recombinant functional proteins, such as proteases and some other antigens participated in T. spiralis intracellular processes. However, immunization with a single antigen generally revealed lower protective effects against T. spiralis infection in mice compared to that with the inactivated whole worms or crude extraction and ES productions. Future study of T. spiralis vaccines should focus on evaluation of the protective efficacy of antigens and/or ligands delivered by nanoparticles that could elicit Th2-type immune response on experimental pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.