In this paper, an image enhancement algorithm is presented for identification of corrosion areas and dealing with low contrast present in shadow areas of an image. This algorithm uses histogram equalization processing under the hue-saturation-intensity model. First of all, an etched image is transformed from red-green-blue color space to hue-saturation-intensity color space, and only the luminance component is enhanced. Then, part of the enhanced image is combined with the original tone component, followed by saturation and conversion to red-green-blue color space to obtain the enhanced corrosion image. Experimental results show that the proposed method significantly improves overall brightness, increases contrast details in shadow areas, and strengthens identification of corrosion areas in the image.
Learned image compression is making good progress in recent years. Peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) are the two most popular evaluation metrics. As different metrics only reflect certain aspects of human perception, works in this field normally optimize two models using PSNR and MS-SSIM as loss function separately, which is suboptimal and makes it difficult to select the model with best visual quality or overall performance. Towards solving this problem, we propose to Harmonize optimization metrics in Learned Image Compression (HLIC) using online loss function adaptation by reinforcement learning. By doing so, we are able to leverage the advantages of both PSNR and MS-SSIM, achieving better visual quality and higher VMAF score. To our knowledge, our work is the first to explore automatic loss function adaptation for harmonizing optimization metrics in low level vision tasks like learned image compression.
For learned image compression, the autoregressive context model is proved effective in improving the ratedistortion (RD) performance. Because it helps remove spatial redundancies among latent representations. However, the decoding process must be done in a strict scan order, which breaks the parallelization. We propose a parallelizable checkerboard context model (CCM) to solve the problem. Our two-pass checkerboard context calculation eliminates such limitations on spatial locations by re-organizing the decoding order. Speeding up the decoding process more than 40 times in our experiments, it achieves significantly improved computational efficiency with almost the same rate-distortion performance. To the best of our knowledge, this is the first exploration on parallelization-friendly spatial context model for learned image compression.
Abstract-Due to the rapid development of computer and sensing technology, many measurements of process variables are readily available in manufacturing processes. These measurements carry a large amount of information about process conditions. It is highly desirable to develop a process monitoring and diagnosis methodology that can utilize this information. In this paper, a statistical process control monitoring system is developed for a class of commonly available process measurements-cycle-based waveform signals. This system integrates the statistical process control technology and the Haar wavelet transform. With it, one can not only detect a process change, but also identify the location and estimate the magnitude of the process mean shift within the signal. A case study involving a stamping process demonstrates the effectiveness of the proposed methodology on the monitoring of the profile-type data.Note to Practitioners-Cycle-based signal refers to an analog or digital signal that is obtained through automatic sensing during each operation cycle of a manufacturing process. The cycle-based signal is very common in various manufacturing processes (e.g., forming force in stamping processes, the holding force, and the current signals in spot welding processes, the insertion force in the engine assembly process). In general, cycle-based signals contain rich process information. In this paper, cycle-based signal monitoring will be accomplished by monitoring the wavelet transformation of the signal, instead of monitoring the raw observations themselves. Further, a decision-making technique is developed using the SPC monitoring system to locate where the mean shift occurred and to estimate magnitudes of mean shifts. Thus, this paper presents a generic framework for the enhanced statistical process control technique of cycle-based signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.