Blue mold caused by Penicillium sp. is one of the most serious postharvest diseases of citrus fruit. The aim of this study was to isolate and identify native Bacillus with inhibition phenotypes of citrus plants fruits. We investigated the antifungal effect of Bacillus velezensis wr8 on the postharvest pathogens Penicillium sp. inoculated on fruits, as well as on the growth of these fungi on Petri dishes with defined media. MALDI-TOF MS was conducted to illuminate the underlying mechanism. Results showed that Bacillus velezensis wr8 significantly inhibited Penicillium sp. growth in vitro. Moreover, secondary metabolites suppressed the disease development of citrus fruits artificially inoculated with Penicillium sp. in 25℃. Furthermore, MALDI-TOF MS indicated that lipoprotein with the molecular mass of 30.2 kDa was a key component about against Penicillium sp.. In addition, the secondary metabolites with antibacterial activity against Escherichia coli showed antimicrobial peptide with the molecular weight of 9.8 kDa. These results demonstrated that Bacillus velezensis wr8 could produce lipoprotein and antimicrobial peptide to inhibit Penicillium sp. and Escherichia coli which has broad application prospect in the future development. Finally, Bacillus velezensis wr8 is to provide data support for the development and utilization of high activity bacteriocin at room temperature and its application in the field of food safety.
Blue mold caused by Penicillium sp. is one of the most serious postharvest diseases of citrus fruit. The aim of this study was to isolate and identify native Bacillus with inhibition phenotypes of citrus plants fruits. We investigated the antifungal effect of Bacillus velezensis wr8 on the postharvest pathogens Penicillium sp. inoculated on fruits, as well as on the growth of these fungi on Petri dishes with defined media. MALDI-TOF MS was conducted to illuminate the underlying mechanism. Results showed that Bacillus velezensis wr8 significantly inhibited Penicillium sp. growth in vitro. Moreover, secondary metabolites suppressed the disease development of citrus fruits artificially inoculated with Penicillium sp. in 25℃. Furthermore, MALDI-TOF MS indicated that lipoprotein with the molecular mass of 30.2 kDa was a key component about against Penicillium sp.. In addition, the secondary metabolites with antibacterial activity against Escherichia coli showed antimicrobial peptide with the molecular weight of 9.8 kDa. These results demonstrated that Bacillus velezensis wr8 could produce lipoprotein and antimicrobial peptide to inhibit Penicillium sp. and Escherichia coli which has broad application prospect in the future development. Finally, Bacillus velezensis wr8 is to provide data support for the development and utilization of high activity bacteriocin at room temperature and its application in the field of food safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.