BackgroundStaphylococcus aureus is one of the most prevalent pathogens and a causative agent of a variety of infections in humans and animals. A total of 640 samples were collected from healthy animals and patients from 2013 to 2014 in Henan Province, China, to investigate the prevalence and perform molecular characterization of S. aureus. Antimicrobial resistance and virulence genes were determined and pulsed-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome mec (SCCmec) typing were performed.ResultsOverall, 22.3% (n = 143) of the samples were positive for S. aureus. The prevalence of methicillin-resistant S. aureus (MRSA) was 5.59%. Capsular polysaccharide locus type 5 (Cap5; 56.64%) was the dominant serotype. S. aureus strains showed high resistance to penicillin (96.50%), ciprofloxacin (52.45%), amikacin (67.83%), erythromycin (96.50%), lincomycin (97.20%), and tetracycline (68.53%) and 109 (76.2%) isolates harbored six or more tested resistance genes. The most predominant resistance genes were aphA (52.45%), ermC (53.15%), and tetM (52.45%). Eighty-seven (60.8%) isolates harbored six or more tested virulence genes. The most predominant enterotoxin genes were sed (20.28%), sej (20.98%), sep (14.69%), and set (37.76%). The prevalence of lukED gene was (57.34%), and a small number of isolates carried pvl (5.59%) and TSST-1 (2.80%). A total of 130 (82.52%) isolates could be typed by PFGE with SmaI digestion. PFGE demonstrated that 45 different patterns (P) that were grouped into 17 pulsotypes and 28 separate pulsotypes using a 90% cut-off value. A total of 118 (82.52%) isolates were successfully typed by spa, and 26 spa types were identified, t15075 (14.00%) and t189 (12.59%) were the most common types. SCCmec types were detected from eight MRSA isolates, with the most prevalent type being SCCmec IVa. MRSA-SCCmec Iva-t437 was observed in human isolates.ConclusionThis study revealed a high prevalence of S. aureus in healthy animals and patients from Henan Province, China. Resistant S. aureus exhibited varying degrees of multidrug resistance. The presence of antibiotic resistance and virulence genes may facilitate the spread of S. aureus strains and pose a potential threat to public health, highlighting the need for vigilant monitoring of these isolates at the human–animal interface.Electronic supplementary materialThe online version of this article (10.1186/s13099-018-0254-9) contains supplementary material, which is available to authorized users.
BackgroundThe plasmid-encoded multidrug efflux pump oqxAB confers bacterial resistance primarily to olaquindox, quinolones, and chloramphenicol. The aims of this study were to investigate the prevalence of oqxAB among Escherichia coli isolates from dogs, cats, and humans in Henan, China and the susceptibilities of E. coli isolates to common antibiotics.MethodsFrom 2012 to 2014, a total of 600 samples which included 400 rectal samples and 200 clinical human specimens were tested for the presence of E. coli. All isolates were screened for oqxAB genes by PCR and sequencing. The MICs of 11 antimicrobial agents were determined by the broth microdilution method. A total of 30 representative oqxAB-positive isolates were subjected to ERIC-PCR and MLST. Additionally, conjugation experiments and southern hybridizations were performed.ResultsOf 270 isolates, 58.5% (62/106) of the isolates from dogs, 56.25% (36/64) of the isolates from cats, and 42.0% (42/100) of the isolates from humans were positive for the oqxAB. Olaquindox resistance was found for 85.7%-100% of oqxAB-positive isolates. Of oqxAB-positive isolates from dogs, cats, and humans, ciprofloxacin resistance was inspected for 85.8%, 59.1%, and 93.8%, respectively. Several oqxAB-positive isolates were demonstrated by ERIC-PCR and MLST, and have high similarity. Phylogenetic analysis showed that oqxAB-positive isolates could be divided into 7 major clusters. OqxAB-positive conjugants were obtained, southern hybridization verified that the oqxAB gene complex was primarily located on plasmids.ConclusionIn conclusion, oqxAB-positive isolates were widespread in animals and humans in Henan, China. Carriage of oqxAB on plasmids of E. coli isolates may facilitate the emergence of multidrug resistant and its transmission via horizontal transfer, and might pose a potential threat to public health.Electronic supplementary materialThe online version of this article (10.1186/s13756-018-0310-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.