Estrogen antagonists are universally employed in the breast cancer therapy, although antagonist therapy is limited by the inevitable development of cellular resistance. The molecular mechanisms by which these agents inhibit cellular proliferation in breast cancer cells are not fully defined. Recent studies have shown the involvement of the E2F pathway in tamoxifen-induced growth arrest. We show that an E2F repressor, prohibitin, and the chromatin modifiers Brg1/Brm are required for estrogen antagonist-mediated growth suppression through the estrogen receptor, and that their recruitment to native promoter-bound E2F is induced via a JNK1 pathway. In addition, we demonstrate major mechanistic differences among the signaling pathways initiated by estrogen, estrogen deprivation, and estrogen antagonists. Collectively, these findings suggest that the prohibitin/Brg1/Brm node is a major cellular target for estrogen antagonists, and thereby also implicate prohibitin/Brg1/Brm as potentially important targets for breast cancer therapy.
Background: Blastocyst stage embryos require a large pool of methyl groups, but the source is unknown. Results: Betaine-homocysteine methyltransferase (BHMT), which takes methyl groups from betaine, is highly active in mouse blastocysts and promotes development of cells that become the fetus. Conclusion: BHMT contributes to the methyl pool in the blastocyst. Significance: Betaine and BHMT promote embryo development.
Hydrophobins are a group of low-molecular-mass, cysteine-rich proteins that have unusual biophysical properties. They are highly surface-active and can self-assemble at hydrophobic-hydrophilic interfaces, forming surface layers that are able to reverse the hydropathy of surfaces. Here we describe a novel hydrophobin from the edible mushroom Grifola frondosa, which was named HGFI and belongs to class I. The hydrophobin gene was identified during sequencing of random clones from a cDNA library, and the corresponding protein was isolated as a hot SDS-insoluble aggregate from the cell wall. The purified HGFI was found to have 83 amino acids. The protein sequence deduced from the cDNA sequence had 107 amino acids, from which a 24 aa signal sequence had been cleaved off in the mature protein. This signal sequence was 5 aa longer than had been predicted on the basis of signal peptide analysis of the cDNA. Rodlet mosaic structures were imaged using atomic force microscopy (AFM) on mica surfaces after drying-down HGFI solutions. Using Langmuir films we were also able to take images of both the hydrophobic and hydrophilic sides of films formed at the air-water interface. No distinct structure was observed in films compressed once, but in films compressed several times rodlet structures could be seen. Most rodlets were aligned in the same direction, indicating that formation of rodlets may be promoted during compression of the monolayer.
Biogenic SeNPs synthesized by Lactobacillus casei ATCC 393 reversed diquat-induced oxidative damage to the epithelium by activating the Nrf2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.