Along with deep scaling transistors and complex electronics information exchange networks, very-large-scale-integrated (VLSI) circuits require high performance and ultra-low power consumption. In order to meet the demand of data-abundant workloads and their energy efficiency, improving only the transistor performance would not be sufficient. Super high-speed microprocessors are useless if the capacity of the data lines is not increased accordingly. Meanwhile, traditional on-chip copper interconnects reach their physical limitation of resistivity and reliability and may no longer be able to keep pace with a processor’s data throughput. As one of the potential alternatives, carbon nanotubes (CNTs) have attracted important attention to become the future emerging on-chip interconnects with possible explorations of new development directions. In this paper, we focus on the electrical, thermal, and process compatibility issues of current on-chip interconnects. We review the advantages, recent developments, and dilemmas of CNT-based interconnects from the perspective of different interconnect lengths and through-silicon-via (TSV) applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.