The global forest ecosystem, which acts as a large carbon sink, plays an important role in modeling the global carbon balance. An accurate estimation of the total forest carbon stock in the aboveground biomass (AGB) is therefore necessary for improving our understanding of carbon dynamics, especially against the background of global climate change. The forest area of China is among the top five globally. However, because of limitations in forest AGB mapping methods and the availability of ground inventory data, there is still a lack in nationwide wall-to-wall forest AGB estimation map for China. In this study, we collected over 8000 ground inventory records from published literatures, and developed an AGB mapping method using a combination of these ground inventory data, Geoscience Laser Altimeter System (GLAS)/Ice, Cloud, and Land Elevation Satellite (ICESat) data, optical imagery, climate surfaces, and topographic data. An uncertainty field model was introduced into the forest AGB mapping procedure to minimize the influence of plot location uncertainty. Our nationwide wall-to-wall forest AGB mapping results show that the forest AGB density in China is 120 Mg/ha on average, with a standard deviation of 61 Mg/ha. Evaluation with an independent ground inventory dataset showed that our proposed method can accurately map wall-to-wall forest AGB across a large landscape. The adjusted coefficient of determination (R 2) and root-mean-square error between our predicted results and the validation dataset were 0.75 and 42.39 Mg/ha, respectively. This new method and the resulting nationwide wall-to-3 wall forest AGB map will help to improve the accuracy of carbon dynamic predictions in China.
[1] Land surface hydrological modeling is sensitive to near-surface air temperature, which is especially true for the cryosphere. The lapse rate of near-surface air temperature is a critical parameter when interpolating air temperature from station data to gridded cells. To obtain spatially distributed, fine-resolution near-surface (2 m) air temperature in the mainland China, monthly air temperature from 553 Chinese national meteorological stations (with continuous data from 1962 to 2011) are divided into 24 regional groups to analyze spatiotemporal variations of lapse rate in relation to surface air temperature and relative humidity. The results are as follows: (1) Evaluation of estimated lapse rate shows that the estimates are reasonable and useful for temperature-related analyses and modeling studies. (2) Lapse rates generally have a banded spatial distribution from southeast to northwest, with relatively large values on the Tibetan Plateau and in northeast China. The greatest spatial variability is in winter with a range of 0.3°C-0.9°C · 100 m À1 , accompanied by an inversion phenomenon in the northern Xinjiang Province. In addition, the lapse rates show a clear seasonal cycle. (3) The lapse rates maintain a consistently positive correlation with temperature in all seasons, and these correlations are more prevalent in the north and east. The lapse rates exhibit a negative relationship with relative humidity in all seasons, especially in the east. (4) Substantial regional differences in temporal lapse rate trends over the study period are identified. Increasing lapse rates are more pronounced in northern China, and decreasing trends are found in southwest China, which are more notable in winter. An overall increase of air temperature and regional variation of relative humidity together influenced the change of lapse rate.
The rapid development of light detection and ranging (LiDAR) techniques is advancing ecological and forest research. During the last decade, numerous single tree segmentation techniques have been developed using airborne LiDAR data. However, accurate crown segmentation using terrestrial or mobile LiDAR data, which is an essential prerequisite for extracting branch level forest characteristics, is still challenging mainly because of the difficulties posed by tree crown intersection and irregular crown shape. In the current work, we developed a comparative shortest-path algorithm (CSP) for segmenting tree crowns scanned using terrestrial (T)-LiDAR and mobile LiDAR. The algorithm consists of two steps, namely trunk detection and subsequent crown segmentation, with the latter inspired by the well-proved metabolic ecology theory and the ecological fact that vascular plants tend to minimize the transferring distance to the root. We tested the algorithm on mobile-LiDAR-scanned roadside trees and T-LiDAR-scanned broadleaved and coniferous forests in China. Point-level quantitative assessments of the segmentation results showed that for mobile-LiDAR-scanned roadside trees, all the points were classified to their corresponding trees correctly, and for T-LiDAR-scanned broadleaved and coniferous forests, kappa coefficients ranging from 0.83 to 0.93 were obtained. We believe that our algorithm will make a contribution to solving the problem of crown segmentation in T-LiDAR scanned-forests, and might be of interest to researchers in LiDAR data processing and to forest ecologists. In addition, our research highlights the advantages of using ecological theories as guidelines for processing LiDAR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.