Protein-directed dynamic combinatorial chemistry (DCC) relies on reversible chemical reactions that can function under the near-physiological conditions required by the biological target. Few classes of reaction have so far proven effective at generating dynamic combinatorial libraries (DCLs) under such constraints. In this study, we establish the conjugate addition of thiols to enones as a reaction well-suited for the synthesis of dynamic combinatorial libraries (DCLs) directed by the active site of the enzyme glutathione S-transferase (GST). The reaction is fast, freely reversible at basic pH, and easily interfaced with the protein, which is a target for the design of inhibitors in cancer therapy and the treatment of parasitic diseases such as schistosomiasis. We have synthesized DCLs based on glutathione (GSH, 1) and the enone ethacrynic acid, 2a. By varying either set of components, we can choose to probe either the GSH binding region ("G site") or the adjacent hydrophobic acceptor binding region ("H site") of the GST active site. In both cases the strongest binding DCL components are identified due to molecular amplification by GST which, in the latter system, leads to the identification of two new inhibitors for the GST enzyme.
This study employed the reactive force field molecular dynamics to capture atomic-level heat and mass transfer and reaction processes of an aluminum nanoparticle (ANP) oxidizing in a high temperature and pressure oxygen atmosphere, revealing detailed mechanisms for oxidation of ANPs. Temporal variations of temperature, density, mean square displacement, atom consumption rate and heat release rate of ANP have been systematically examined. In addition, the effects of environment on ANP oxidation were also evaluated. The results show that ANP undergoes four stages of preheating, melting, fast Al core and moderate shell oxidations during the whole oxidation process. The Al core starts to melt from core-shell interface with outward diffusion of core Al atoms into the shell. Intense reaction occurs between shell O and core Al atoms around interface at the end of melting, leading to fast Al core oxidation. After complete oxidation of Al core, the oxide shell continues to react with ambient O atoms. Both the initial environmental temperature and the equivalent pressure significantly influence the preheating. Oppositely, the melting stage seems almost independent any of them. While the fast Al core oxidation presents more sensitivity to the ambient equivalent pressure.
Dirhodium tetraacetate catalyzed reaction of alpha-diazo-beta-keto-carboxylates and -phosphonates with arenecarboxamides gives 2-aryloxazole-4-carboxylates and 4-phosphonates by carbene N-H insertion and cyclodehydration. In stark contrast, dirhodium tetrakis(heptafluorobutyramide) catalysis results in a dramatic change of regioselectivity to give oxazole-5-carboxylates and 5-phosphonates. Alpha-diazo-beta-ketosulfones behave similarly and give 5-sulfonyloxazoles upon dirhodium tetrakis(heptafluorobutyramide) catalyzed reaction with carboxamides. The analogous reactions of thiocarboxamides give the corresponding thiazole-5-carboxylates, -phosphonates, and -sulfones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.