Dynamic covalent chemistry uses reversible chemical reactions to set up an equilibrating network of molecules at thermodynamic equilibrium, which can adjust its composition in response to any agent capable of altering the free energy of the system. When the target is a biological macromolecule, such as a protein, the process corresponds to the protein directing the synthesis of its own best ligand. Here, we demonstrate that reversible acylhydrazone formation is an effective chemistry for biological dynamic combinatorial library formation. In the presence of aniline as a nucleophilic catalyst, dynamic combinatorial libraries equilibrate rapidly at pH 6.2, are fully reversible, and may be switched on or off by means of a change in pH. We have interfaced these hydrazone dynamic combinatorial libraries with two isozymes from the glutathione S-transferase class of enzyme, and observed divergent amplification effects, where each protein selects the best-fitting hydrazone for the hydrophobic region of its active site.
Despite major recent advances in C–H activation, discrimination between two similar, unactivated C–H positions is beyond the scope of current chemocatalytic methods. Here we demonstrate that integration of regioselective halogenase enzymes with Pd-catalysed cross-coupling chemistry, in one-pot reactions, successfully addresses this problem for the indole heterocycle. The resultant ‘chemobio-transformation' delivers a range of functionally diverse arylated products that are impossible to access using separate enzymatic or chemocatalytic C–H activation, under mild, aqueous conditions. This use of different biocatalysts to select different C–H positions contrasts with the prevailing substrate-control approach to the area, and presents opportunities for new pathways in C–H activation chemistry. The issues of enzyme and transition metal compatibility are overcome through membrane compartmentalization, with the optimized process requiring no intermediate work-up or purification steps.
[Cu(dap)2]Cl effectively catalyzes azide addition from the Zhdankin reagent to styrene-type double bonds, and subsequent addition of a third component to the benzylic position. In the presence of light, a photoredox cycle is implicated with polar components such as methanol or bromide adding to a benzylic cation. In the absence of light, by contrast, double azidation takes place to give diazides. Therefore, regioselective double functionalization can be achieved in good to excellent yields, with a switch between light and dark controlling the degree of azidation.
The first total synthesis of (+/-)-ingenol has been achieved. The key features of the synthesis include the use of a highly diastereoselective Michael reaction to fix the C-11 methyl stereochemistry and the incorporation of the dimethylcyclopropane via diastereoselective carbene addition to the Delta13,14 olefin. The intramolecular dioxenone photoaddition-fragmentation sequence leads to the establishment of the critical C-8/C-10 trans intrabridgehead stereochemistry, a central challenge in the synthesis of ingenanes. The completion of the synthesis proceeds using the C-6alpha hydroxymethyl group as the sole handle for oxidation of seven contiguous carbon centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.