Surface mount technology (SMT) plays an important role in integrated circuits, but due to thermal stress alternation caused by temperature cycling, it tends to have thermo-mechanical reliability problems. At the same time, considering the environmental and health problems of lead (Pb)-based solders, the electronics industry has turned to lead-free solders, such as ternary alloy Sn-3Ag-0.5Cu (SAC305). As lead-free solders exhibit visco-plastic mechanical properties significantly affected by temperature, their thermo-mechanical reliability has received considerable attention. In this study, the interface delamination of an SMT solder joint using a SAC305 alloy under temperature cycling has been analyzed by the nonlinear finite element method. The results indicate that the highest contact pressure at the four corners of the termination/solder horizontal interface means that delamination is most likely to occur, followed by the y-direction side region of the solder/land interface and the top arc region of the termination/solder vertical interface. It should be noted that in order to keep the shape of the solder joint in the finite element model consistent with the actual situation after the reflow process, a minimum energy-based morphology evolution method has been incorporated into the established finite element model. Eventually, an Improved Efficient Global Optimization (IEGO) method was used to optimize the geometry of the SMT solder joint in order to reduce the contact pressure at critical points and critical regions. The optimization result shows that the contact pressure at the critical points and at the critical regions decreases significantly, which also means that the probability of thermal-induced delamination decreases.
With the development of miniaturization and integration of electronic devices, the conventional manifold microchannels (MMCs) structure has been unable to meet the heat dissipation requirements caused by the rapid growth of internal heat flux. There is an urgent need to design a new heat dissipation structure with higher heat dissipation capacity to ensure the working stability and life of electronic devices. In this paper, we designed a novel manifold dual-microchannel (MDMC) cooling system that embedded the microchannel structure into the manifold microchannel structure. The MDMC not only has good heat dissipation performance that can meet the development needs of electronic equipment to miniaturization and integration, but also has a compact structure that does not increase the overall thickness and volume compared with MMC. The high temperature uniformity and heat transfer performance of MDMC are significantly improved compared to MMC. The Tmax is reduced by 13.6% and 17.5% at the heat flux density of 300 W/cm2 and 700 W/cm2, respectively. In addition, the influence of the inlet−2 velocity and the total microchannels number on the heat transfer performance of the MDMC structure are numerically investigated. The results show that the decrease rate of Tmax and ΔT is about 6.69% and 16% with the increase of inlet−2 velocity from 1.2 m/s to 2.4 m/s and microchannels number from 10 to 48, respectively. At the same time, the best temperature uniformity is obtained when the number of microchannels is 16.
The large, fully steerable radio telescope is susceptible to the wind load, leading to structure deformation and pointing deviation of the telescope. To effectively suppress the influence of dynamic wind load, the wind resistance control of the telescope is carried out based on wind speed forecasting. This study developed a wind speed forecasting model to efficiently forecast the wind speed at the telescope position. The proposed model successfully eliminated the random noise of the original wind speed, effectively extracted the wind speed features, and solved the automatic optimization of the hyperparameters of the forecasting network. This model significantly improves the accuracy and reliability of wind speed forecasting. To verify the forecasting performance of the proposed model, the wind data from the Qitai radio telescope site as case studies. The wind speed forecasting model's MAE, RMSE and MAPE are 0.0361, 0.0703 and 3.87%, respectively. The performance of the proposed model meets the requirements of wind resistance control and can provide data support for the radio telescope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.