Dielectric polyimides (PIs) are ubiquitous as insulation in electrical power systems and electronic devices. Generally, dynamic polyimide is required to solve irreversible failure processes of electrical or mechanical damage, for example, under high temperature, pressure, and field strength. The challenge lies in the design of the molecular structure of rigid polyimide to achieve dynamic reversibility. Herein, a low‐molecular‐weight polyimide gene unit is designed to crosslink with polyimide ligase to prepare the smart film. Interestingly, due to the variability of gene unit and ligase combinations, the polyimide films combining hardness with softness are designed into three forms via a “Mimosa‐like” bionic strategy to adapt to different application scenarios. Meanwhile, the films have good degradation efficiency, excellent recyclability, and can be self‐healable, which makes them reuse. Clearly, the films can be used in the preparation of ultrafast sensors with a response time ≈0.15 s and the application of corona‐resistant films with 100% recovery. Furthermore, the construction of polyimide and carbon‐fiber‐reinforced composites (CFRCs) has been verified to apply to the worse environment. Nicely, the composites have the property of multiple cycles and the non‐destructive recycle rate of carbon fiber (CF) is as high as 100%. The design idea of preparing high‐strength dynamic polyimide by crosslinking simple polyimide gene unit with ligase could provide a good foundation and a clear case for the sustainable development of electrical and electronic polyimides, from the perspective of Mimosa bionics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.