In this work, ultrafast thermal shock of Ti3AlC2 ceramic was evaluated in water and air by utilizing the induction heating method. First, the annealed samples were heated to the set temperature in tens of seconds and dropped into the cooling water within 0.1 s which is rather short not to degrade the sample temperature. Compared to the traditional thermal shock method when quenching in water, the abnormal thermal shock phenomenon did not occur, which is owing to that no dense oxide layers were formed on the samples’ surface to act as the thermal barrier. The continuous decrease in residual flexural strength when quenched in water is associated with water infiltration, chemical reaction, and large surface tensile stress. The residual strength has 27.25 MPa upon 1250°C. Second, at the same testing temperature, the residual flexural strength when quenched in air maintains a high value of 388 MPa up to 1400°C. Dense oxide scales existed on the quenched surface of Ti3AlC2 samples. The results exhibit that Ti3AlC2 ceramic possesses excellent thermal shock resistance in water and air, suitable to be applied in extreme environments.
In this work, the rapid thermal shock behavior of Ti2AlC ceramics was studied using induction heating. The present evaluation method possesses the merits of very rapid heating within tens of seconds and fast quenching in water of less than 0.1 s, removing the shortcomings of traditional thermal shock. For comparison, the samples were also quenched in the air to investigate the thermal shock mechanisms. The results showed that the abnormal shock occurred in the samples when quenching in water, ascribed to the formed oxide layer on the surface of Ti2AlC ceramic inhibited the water penetration into the substrate. The quenched Ti2AlC samples still had a high residual flexural strength above 167 MPa up to 1150 °C, exhibiting promising applications in the high-temperature fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.