An increasing number of clinical and animal model studies indicate that activation of the innate immune system and inflammatory mechanisms are important in the pathogenesis of diabetic nephropathy. Nucleotide-binding oligomerization domain containing 2 (NOD2), a member of the NOD-like receptor family, plays an important role in innate immune response. Here we explore the contribution of NOD2 to the pathogenesis of diabetic nephropathy and found that it was upregulated in kidney biopsies from diabetic patients and high-fat diet/streptozotocin-induced diabetic mice. Further, NOD2 deficiency ameliorated renal injury in diabetic mice. In vitro, NOD2 induced proinflammatory response and impaired insulin signaling and insulin-induced glucose uptake in podocytes. Moreover, podocytes treated with high glucose, advanced glycation end-products, tumor necrosis factor-α, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) significantly increased NOD2 expression. NOD2 knockout diabetic mice were protected from the hyperglycemia-induced reduction in nephrin expression. Further, knockdown of NOD2 expression attenuated high glucose-induced nephrin downregulation in vitro, supporting an essential role of NOD2 in mediating hyperglycemia-induced podocyte dysfunction. Thus, NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation and podocyte insulin resistance in diabetic nephropathy.
Histone deacetylases (HDACs)-mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDACs associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion (MCAO) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDACs and explore the roles of individual HDACs in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn2+-dependent HDACs, HDAC4 and HDAC5 were significantly decreased both in vivo and in vitro, which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC4 and HDAC5 increased cell viability through inhibition of HMGB1, a central mediator of tissue damage following acute injury, expression and release in PC12 cells. Our results for the first time provide evidence that NADPH oxidase-mediated HDAC4 and HDAC5 expression contributes to cerebral ischaemia injury via HMGB1 signalling pathway, suggesting that it is important to elucidate the role of individual HDACs within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.