Summary
A novel compound flame retardant (carbon microspheres/magnesium hydroxide, abbreviated as CMSs/MH) was used to improve the fire performance of polyethylene terephthalate (PET). LOI, UL94, and Cone test results showed that CMSs/MH/PET composites obtained the best fire performance at the mass ratio of CMSs to MH, which was 5:5, where the CMSs/MH content was 1.0 wt. % of PET. The Py‐CS‐MS, TGA‐DSC results, and morphology of char residue revealed the flame‐retardant mechanism. CMSs/MH increased the thermal stability of PET by increasing the activation energy at the initial combustion stage. At the second stage of combustion, CMSs/MH increased the chance of recombination of free radicals and slowed the combustion. Additionally, CMSs/MH promoted the cross‐linking of pyrolysis products and further improved the continuity of the char layer. Thus, a dense and continuous char layer of CMSs/MH/PET composites was produced; this char layer reduced the heat release rate and increased the amount of char residue.
To reduce the environmental hazard from the flame retardant, a halogen-free phosphorus-containing silicone flame-retardant poly N, N dimethylene phosphate aminopropyl siloxane (PDPSI) was prepared following the Mannich reaction. Then, PDPSI and ferric oxide (Fe2O3) were used for the preparation of synergistic flame-retardant polyethylene terephthalate (PET). The flame-retardant test results revealed that at 2% PDPSI/Fe2O3 content and 1:2 mass ratio of PDPSI to Fe2O3, the limit oxygen index value of the PDPSI/Fe2O3/PET composite material was 27.9%, reaching the flame-retardant level and passing the V-0 rating in the UL-94 test. In addition, the PDPSI/Fe2O3/PET composites had a char residue content of 17.5% at 700°C, an increase of 30.6% compared to that of the pristine PET. In the cone calorimeter test, the addition of PDPSI/Fe2O3 significantly reduced the peak heat release rate (PHRR), total heat release (THR) rate, and total smoke production (TSP) value of the resulting PET composites. PHRR and THR decreased by 66.05% and 14.3%, respectively. The TSP value decreased from 14.4 m2 to 8.1 m2, a decrease of 43.8%. The scanning electron microscopy images and Fourier-transform infrared spectra of the char residue showed a significant synergy between Fe2O3 and PDPSI, changing the structure of the carbon layer in continuous and dense form, thus the flame retardancy and smoke suppression of the PET composites improved. In addition, the tensile strength of the PET composite was 42.11 MPa, which was only 1.84% less than that of the pristine PET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.