The sustainable development of the urban environmental landscape is a process that integrates resource utilization, ecological benefit, economy, and society and involves elements of culture, society, politics, economy, and individual residents. Citizen participation is increasingly important for the urban landscape design, and therefore, urban environmental landscape studies must be evaluated objectively by the public to ensure both sustainable development and social justice. In this study, the Tao Sichuan Creative Industry Park (the former “Universe Porcelain Factory”) in Jingdezhen, Jiangxi province, China, was taken as example, and the implemented landscape reconstruction was evaluated. The analytical hierarchy process was used to collect both expert and public opinions regarding the cultural landscape; then, the weight coefficient of the value index layer of the industrial heritage park was obtained. A comparison of the two groups (experts and the public) showed that the experts do not exactly agree with the perspective of the public: experts prefer the artistic value far more than any other factors, while the public prefers the artistic value, social value, and economic value. Each group prefers different values of the landscape, suggesting that environmental justice should not be biased toward one of these perspectives. Finally, a design optimization principle is proposed according to the results of this study. This principle strengthens the sustainable development concept in the landscape reconstruction of industrial heritage parks, and suggestions are provided for optimizing the allocation of urban public landscape resources.
A new virus with flexuous, filamentous particles approximately 650 nm long was discovered in Manchurian tubergourd (Thladiantha dubia Bunge) leaves exhibiting severe mosaic symptoms. The whole genome sequence of the virus was determined by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The entire genome consisted of 10,112 nucleotides (nt) excluding the poly (A) tail, which shared the highest nucleotide sequence identity (73.8%) with that of papaya leaf distortion mosaic virus Hainan-DF isolate (PLDMV-Hainan-DF). A phylogenetic analysis showed that this virus clustered with PLDMV isolates in a subbranch within the potyviral clade. Of the 23 species of indicator plants tested, only potato and its original host were systemically infected by the virus tested upon mechanical inoculation. A field survey showed that the virus was widely distributed on T. dubia and potatoes in Northeast China. Moreover, this virus displayed a high degree of genetic variation as evaluated by the sequences of the coat protein (CP) gene. Based on these results, the name Thladiantha dubia mosaic virus (ThDMV) is proposed for this new potyvirus.
A sensitive and accurate method was developed for the determination of streptomycin using HPLC followed by postcolumn derivatization and fluorometric detection. The analyte was extracted, using aqueous solution from cucumber and Chinese cabbage, by a two-step SPE procedure. The extraction, cleanup, and chromatography conditions were optimized, and the performance of the analysis method was evaluated. The conditions of chromatography were as follows: the separation was performed on a C18 column; the isocratic mobile phase consisted of acetonitrile and a mixed solution containing 10 mM sodium 1,2-naphthoquinone-4-sulfonate and 0.4 mM sodium 1-heptanesulfonate (25+75, v/v); and the flow rate was 1 mL/min. The fluorescence detector was set at an excitation wavelength of 263 nm and an emission wavelength of 435 nm. The calibration curve was linear over the range of 50-2000 ng/mL, with a correlation coefficient of 0.9995. The LOD and LOQ were 10 and 30 ng/g, respectively, in both cucumber and Chinese cabbage. The method was validated for selectivity, linearity, precision, and accuracy. The intraday and interday precision and accuracy were within 10%. The mean recoveries from spiked samples were more than 75%, with RSD lower than 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.