Semitransparent organic solar cells (ST‐OSCs) offer potentially more opportunities in areas of self‐powered greenhouses and building‐integrated photovoltaic systems. In this work, the effort to use a combination of solution‐processable gold nanobipyramids (AuNBPs)‐based hole transporting layer and a low/high dielectric constant double layer optical coupling layer (OCL) for improving the performance of ST‐OSCs over the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT) is reported. The fabrication and characterization of the ST‐OSCs are guided, at design and analyses level, using the theoretical simulation and experimental optimization. The use of a low/high dielectric constant double layer OCL helps enhancing the visible light transparency while reflecting the near‐infrared (NIR) photons back into the photoactive layer for light harvesting. NIR absorption enhancement in the ST‐OSCs is realized through the AuNBPs‐induced localized surface plasmon resonance (LSPR). The weight ratio of the polymer donor to nonfullerene acceptor in the bulk heterojunction is adjusted to realize the maximum NIR absorption enhancement, enabled by the AuNBPs‐induced LSPR, achieving the high‐performance ST‐OSCs with a high PCE of 13.15% and a high AVT of 25.9%.
Niobium‐carbide (Nb2C) MXene as a new 2D material has shown great potential for application in photovoltaics due to its excellent electrical conductivity, large surface area, and superior transmittance. In this work, a novel solution‐processable poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)‐Nb2C hybrid hole transport layer (HTL) is developed to enhance the device performance of organic solar cells (OSCs). By optimizing the doping ratio of Nb2C MXene in PEDOT:PSS, the best power convention efficiency (PCE) of 19.33% can be achieved for OSCs based on the ternary active layer of PM6:BTP‐eC9:L8‐BO, which is so far the highest value among those of single junction OSCs using 2D materials. It is found that the addition of Nb2C MXene can facilitate the phase separation of the PEDOT and PSS segments, thus improving the conductivity and work function of PEDOT:PSS. The significantly enhanced device performance can be attributed to the higher hole mobility and charge extraction capability, as well as lower interface recombination probabilities generated by the hybrid HTL. Additionally, the versatility of the hybrid HTL to improve the performance of OSCs based on different nonfullerene acceptors is demonstrated. These results indicate the promising potential of Nb2C MXene in the development of high‐performance OSCs.
Semitransparent organic photovoltaics (ST‐OPVs) offer promising prospects for self‐powered greenhouses and building‐integrated photovoltaic systems. However, a remaining critical challenge is to balance the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, a synergetic strategy of light manipulation is developed to achieve high‐performance ST‐OPVs by employing dual photonic structures with a rear single‐layer optical coupling layer (OCL) and a front single‐layer antireflection coating (ARC). The material selection and thickness optimization of both OCL and ARC are systematically guided by combining theoretical simulations and experimental devices, leading to significantly enhanced light utilization in ST‐OPVs. As a result, the use of dual photonic structures enables ST‐OPVs based on the active layer of PM6:Y6 to demonstrate simultaneously a high AVT of 35.7% and a good PCE of 10.29%, yielding an excellent light utilization efficiency of 3.67% with a remarkable improvement of 43% comparing with that of the control device. This work provides a simple yet effective strategy of light manipulation for the development of high‐performance ST‐OPVs.
Semitransparent organic solar cells (ST‐OSCs) can be made in different colors, allowing light to pass through, and yet absorb enough visible and near‐infrared (NIR) light to generate electricity. However, it remains a challenge to achieve high performing ST‐OSCs over the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). This work reports an effort to develop record‐performance ST‐OSCs using a low/high index optical coupling layer (OCL) and a 2D photonic‐structured antireflective (AR) coating. High‐throughput optical screening is used to improve the understanding of OCL structure−performance relationships and the predicting of NIR absorption enhancement for ST‐OSCs. The concurrent use of a low/high index Na3AlF6 (170 nm)/ZnS (110 nm) OCL, identified among about 200 thousand simulated device configurations and a 900 nm pitch‐sized 2D photonic‐structured AR coating, fabricated using nanoimprint lithography, enables the record‐performance ternary PM6:BTP‐eC9:L8‐BO‐based ST‐OSCs, achieving simultaneously a record‐high PCE of 15.2%, a high AVT of 32%, an impressive light utilization efficiency of 4.86%, and a favorable color‐rendering index of 82. The results of the ST‐OSCs demonstrated in this work provide an attractive option for a plethora of applications in self‐powered greenhouses and building‐integrated photovoltaic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.