Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease that affects about a quarter of the world population. MAFLD encompasses different disease stadia ranging from isolated liver steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma. Although MAFLD is considered as the hepatic manifestation of the metabolic syndrome, multiple concomitant disease-potentiating factors can accelerate disease progression. Among these risk factors are diet, lifestyle, genetic traits, intake of steatogenic drugs, male gender and particular infections. Although infections often outweigh the development of fatty liver disease, pre-existing MAFLD could be triggered to progress towards more severe disease stadia. These combined disease cases might be underreported because of the high prevalence of both MAFLD and infectious diseases that can promote or exacerbate fatty liver disease development. In this review, we portray the molecular and cellular mechanisms by which the most relevant viral, bacterial and parasitic infections influence the progression of fatty liver disease and steatohepatitis. We focus in particular on how infectious diseases, including coronavirus disease-19, hepatitis C, acquired immunodeficiency syndrome, peptic ulcer and periodontitis, exacerbate MAFLD. We specifically underscore the synergistic effects of these infections with other MAFLD-promoting factors. Keywords Metabolic-associated fatty liver disease (MAFLD) • Non-alcoholic steatohepatitis (NASH) • Infectious diseases • Lipid metabolism • Liver • SARS-CoV-2 • Human immunodeficiency virus • Hepatitis C • Helicobacter pylori • Klebsiella pneumoniae
Ojectives Since health care budgets are limited and must be allocated efficiently, there is an economic pressure to reduce the costs of health care interventions. This study aims to investigate the cost of testing within a Clinical Chemistry laboratory. Methods This study was conducted in the Clinical Chemistry laboratory of the University Hospital UZ Brussel, Belgium, in which 156 tests were included and an average cost per test was calculated for the year 2018. Activity-based costing (ABC) was applied, using a top-down perspective. Costs were first allocated to different activity centers and subsequently to different tests. Number of tests, parameters, analyzers and time estimates were used as activity cost drivers. Results The blood glucose test on the point-of-care testing (POCT) analyzer Accu Chek Inform II had the lowest unit cost (€0.92). The determination of methanol, ethanol and isopropanol on the GC-FID (7820A) is the test with the highest unit cost (€129.42). In terms of average cost per test per activity center, core laboratory (€3.37) scored lowest, followed consecutively by POCT (€3.49), diabetes (€22.09), toxicology (€31.52), metabolic disorder (€41.53) and cystic fibrosis (€86.02). The cost per test was mainly determined by staff (57%), costs of support services (23%) and reagents (14%). Conclusions High-volume and automated tests have lower unit costs, as is the case with the core laboratory. ABC provides the ability to identify high average cost tests that can benefit from optimizations, such as focusing on automation or outsourcing low-volume tests that can benefit from economies of scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.