Muscle explants myenteric neural ganglion WT-like neural ganglia, colon function and microbiota inflammed submucosa disrupted epithelial barrier thicker muscles dysbiosis Untreated Hirschsprung mouse GDNF-treated Hirschsprung mouse Wild type mouse P20 distal colon no enteric nervous system, megacolon, premature death Mouse models of Hirschsprung disease exogenous GDNF P20/P56 enema P4 P8 P0 e n d o g e n o u s G D N F hypertrophic extrinsic nerve with Schwann cells submucosal neural ganglion People with Hirschsprung disease resected aganglionic colon enteric neuron +GDNF ctl extrinsic nerve and Schwann cells +GDNF ctl nervous system regeneration, WT-like colon function, survival
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line – obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development – is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Male-specific impairment of colonic motility in TashT(Tg/Tg) mice is associated with both severe hypoganglionosis and myenteric neuronal imbalance. Considering these parameters in the clinic might be important for the management of postoperative HSCR patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.