Sago palm (Metroxylon sagu Rottb.) was believed capable to accumulate high carbohydrate content in its trunk. The capability of sago palm producing high carbohydrate should be an appropriate criterion for defining alternative crops in anticipating food crisis. The objective of this research was to study genetic diversity of sago palm in Indonesia based on cpDNA markers. Total genome extraction was done following the Qiagen DNA isolation protocols 2003. Single Nucleotide Fragments (SNF) analyses were performed by using ABI Prism GeneScan R 3.7. SNF analyses detected polymorphism revealing eleven alleles and ten haplotypes from total 97 individual samples of sago palm. Specific haplotypes were found in the population from Papua, Sulawesi, and Kalimantan. Therefore, the three islands will be considered as origin of sago palm diversities in Indonesia. The highest haplotype numbers and the highest specific haplotypes were found in the population from Papua suggesting this islands as the centre and the origin of sago palm diversities in Indonesia. The research had however no sufficient data yet to conclude the Papua origin of sago palm. Genetic hierarchies and differentiations of sago palm samples were observed significantly different within populations (P=0.04574), among populations (P=0.04772), and among populations within the island (P=0.03366), but among islands no significant differentiations were observed (P= 0.63069).
Information of genetic diversity is very important in supporting the implementation of genetic resource conservation and plant breeding. This study aims to determine the genetic diversity of 11 sago palm accessions that have been collected by the Sago Research Consortium (SRC), University of Papua (UNIPA). Methods of research were divided into three steps.Step 1 was DNA extraction by using Geneaid DNA plant Mini Kit.Step 2 was PCR amplification fragments DNA by using KAPA2G Robust HotStart polymerases and performed by using Bio-Rad PCR instrument.Step 3 was purified and sequenced DNA by Macrogen Inc. Seoul, Korea. Data analyses were performed by using a MEGA6.06 software. Morphological characteristics in the rosette stage of 11 sago palm accessions were divided into 4 phenotypes only, and several accessions showed the same phenotypes. Based on atp6-2 gene markers, the 11 sago palm accessions had a different genetic characteristic among the others. Genetic distances among 11 sago palm accessions were in the range among 0.22 and 3.01 with an average 1.21 pairwise distant. Phylogenetic construction showed that the genetic relationship of 11 sago palm accessions was clustered into 6 groups. The accession numbers SP001 and SP002 are in group 1, the accession numbers SP003 and SP011 group 2, the accession numbers SP005 and SP007 group 3, the accession number SP009 group 4, the accession numbers SP008 and SP010 group 5, and the accession numbers SP004 and SP006 group 6. Nucleotide sequence alignments of mitochondrial atp6-2 gene and introns were different from each other in 11 accessions.
The areas of sago palm (Metroxylon sagu Rottb.) forest and cultivation in the world were estimated two million hectares and predicted 50% of that areas located in Indonesia. Distribution of sago palm areas in Indonesia is not evenly distributed as well as their diversities. Information of plant genetic diversities and genetic relationship is very important to be used for germplasm collection and conservation. The objectives of research were revealed the genetic relationships of sago palm in Indonesia based on RAPD molecular markers. Fragments amplification PCR products were separated on 1.7% agarose gel, fixation in Ethidium Bromide, and visualized by using Densitograph. Genetic relationships of sago palm in Indonesia showed that sample in individual level were inclined mixed among the other and just formed three groups. Genetic relationship of sago palm population showed that samples populations from Jayapura, Serui, Sorong, Pontianak, and Selat Panjang were closely related each others based on phylogenetic analysis and formed clustered in one group, event though inclined to be formed two subgroups. Populations from Manokwari, Bogor, Ambon and Palopo were closed related each others, they were in one group. Genetic relationships in the level of island were showed sago palm from Papua, Kalimantan, and Sumatra closely related. Sago palms from Maluku were closed related with sago palm from Sulawesi whereas sago palm from Java separated from the others. Based on this observation we proposed that Papua as centre of sago palm diversities and the origin of sago palm in Indonesia. This research informed us the best way to decide sago palm places for germplasm of sago palm conservation activity.
Abstract. Yater T, Tubur HW, Meliala C, Abbas B. 2019. Short Communication: A comparative study of phenotypes and starch production in sago palm (Metroxylon sagu) growing naturally in temporarily inundated and non-inundated areas of South Sorong, Indonesia. Biodiversitas 20: 1121-1126. Sago palm forests and sago palm semi cultivation are generally spread in swampy areas, seasonally inundated areas and non-inundated areas. The objectives of this study are to determine and compare the phenotypes of and starch production by sago palms growing naturally in the temporarily inundated areas (TIA type) and non-inundated areas (WIA type) in South Sorong District, West Papua Province, Indonesia. Sago palms of both habitats were found to be the same variety based on analysis of vernacular names and general characteristics. Comparison of morphological characters related to starch production of TIA and WIA types showed that there were no significant differences between the two studied types. The distribution of starch along the sago trunk was observed to be uneven, higher starch accumulation was found in the middle part of the trunk which was significantly different from the lower and upper parts of the trunk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.