The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide.
Lipid bilayers supported by substrates with nanometer-scale surface corrugations hold interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g., porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, lateral diffusion coefficient, and lipid density in comparison to mica-supported lipid bilayers were characterized by atomic force microscopy, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the silica xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface in the fluid regions. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of fluid lipids on silica xerogel (approximately 1.7 microm2/s) is lower than on mica (approximately 3.9 microm2/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on silica xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase lipid bilayer that penetrates approximately midway into the first layer of approximately 50 nm silica xerogel beads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.