The presence of nerve fibers and mechanoreceptors in the sacroiliac ligament demonstrates that the central nervous system receives information, certainly proprioceptive, and possibly pain from the sacroiliac joint. Although it is not known how the central nervous system uses such information, it seems reasonable to speculate that the proprioceptive information is used to optimize upper body balance at this joint. In addition, because the staining techniques used generally to show nerves and nerve elements in periarticular connective tissue are nonspecific, the distinction between neural and nonneural should be made on the basis of both morphologic and staining characteristics.
BackgroundStroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon‐β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing‐remitting multiple sclerosis for more than a decade. Its anti‐inflammatory properties and well‐characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke.Methods and ResultsWe investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4+ T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain.ConclusionsOur results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti‐inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator.
Background: Inflammatory stimuli induce immunoresponsive gene 1 (IRG1) expression that in turn catalyzes the production of itaconate from the tricarboxylic acid cycle. Itaconate has recently emerged as a regulator of immune cell functions, especially in macrophages. Studies show that itaconate is required for the activation of anti-inflammatory transcription factor Nrf2 by LPS in mouse and human macrophages, and LPS-activated IRG1-/macrophages that lack endogenous itaconate production exhibit augmented inflammatory responses. Moreover, dimethyl itaconate (DMI), an itaconate derivative, inhibits IL-17-induced IκBς activation in keratinocytes and modulates IL-17-IκBς pathway-mediated skin inflammation in an animal model of psoriasis. Currently, the effect of itaconate on regulating macrophage functions and peripheral inflammatory immune responses is well established. However, its effect on microglia (MG) and CNS inflammatory immune responses remains unexplored. Thus, we investigated whether itaconate possesses an immunomodulatory effect on regulating MG activation and CNS inflammation in animal models of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Methods: Chronic C57BL/6 EAE was induced followed by DMI treatment. The effect of DMI on disease severity, bloodbrain barrier (BBB) disruption, MG activation, peripheral Th1/Th17 differentiation, and the CNS infiltration of Th1/Th17 cells in EAE was determined. Primary MG was cultured to study the effect of DMI on MG activation. Relapsing-remitting SJL/J EAE was induced to assess the therapeutic effect of DMI. Results: Our results show DMI ameliorated disease severity in the chronic C57BL/6 EAE model. Further analysis of the cellular and molecular mechanisms revealed that DMI mitigated BBB disruption, inhibited MMP3/MMP9 production, suppressed microglia activation, inhibited peripheral Th1/Th17 differentiation, and repressed the CNS infiltration of Th1 and Th17 cells. Strikingly, DMI also exhibited a therapeutic effect on alleviating severity of relapse in the relapsingremitting SJL/J EAE model.
MS is an autoimmune disease characterized by immune cell infiltration in the CNS, leading to cumulative disability. IFN-β, used clinically in RR-MS reduces lesion formation and rates of relapse. Although the molecular mechanisms are not entirely elucidated, myeloid cells appear to be a major target for the therapeutic effects of IFN-β. DCs have a critical role in experimental models of MS through their effect on encephalitogenic Th1/Th17 cell differentiation and expansion. Here we focused on the effects of IFN-β on DC expression of cytokines involved in the control of Th1/Th17 differentiation and expansion. Administration of IFN-β to mice immunized with MOG35-55 inhibited IL-12 and IL-23 expression in splenic DC and reduced in vivo differentiation of Th1/Th17 cells. IFN-β affected cytokine expression in TLR-stimulated DC in a similar manner in vitro, inhibiting IL-12 and IL-23 and stimulating IL-10 at both mRNA and protein levels, by signaling through IFNAR. We investigated the role of the signaling molecules STAT1/STAT2, IRF-1 and IRF-7, and of the PI3K→GSK3 pathway. IFN-β inhibition of the IL-12 subunits p40 and p35 was mediated through STAT1/STAT2, whereas inhibition of IL-23 was STAT1 dependent, and the stimulatory effect on IL-10 expression was mediated through STAT2. IFN-β induces IRF-7 and, to a lesser degree, IRF-1. However, neither IRF mediated the effects of IFN-β on IL-12, IL-23, or IL-10. We found that the PI3K pathway mediated IL-12 inhibition but did not interfere with the inhibition of IL-23 or stimulation of IL-10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.