When exposed to xanthine oxidase (superoxide)-dependent, iron-promoted Fenton chemistry, purified cardiac membranes evidenced, by the thiobarbituric acid (TBA) test, a virtually instantaneous peroxidative response with a maximal linear rate of 5.8 nmol malondialdehyde (MDA)-equivalents/mEquivalents lipid ester reacted/min. Yet when the lipids purified from these same membranes and reconstituted into liposomes were peroxidized under identical reaction conditions, the TBA test indicated that a pronounced (approximately 20-min) lag period preceded a maximal peroxidation rate of only 2.1 nmol MDA-equivalents/mEquivalents lipid ester reacted/min. After 120 min of peroxidation, the cardiac membranes yielded some 300 nmol TBA-reactive MDA-equivalents/mEquivalent ester, whereas the isolated membrane lipids evidenced approximately 40% less TBA-reactivity. To verify that these quantitative and kinetic differences in membrane (phospho)-lipid peroxidation occurred with removal of the lipids from their membrane milieu, the MDA produced during both cardiac membrane peroxidation and the peroxidation of the lipids derived therefrom was isolated as its free anion by ion-pair high-pressure liquid chromatography. As quantified spectrophotometrically, true MDA production during myocardial membrane peroxidation was identical in kinetics and in amount to the production of TBA-reactive substance from the peroxidized isolated membrane lipids. These results demonstrate that significant non-MDA, TBA-reactive species are generated during the peroxidation of cardiac membranes, especially before the maximal rates of bona fide MDA production. As a direct consequence, artifactual levels and kinetics of membrane lipid peroxidation do result.
A systematic study of the influence of biological lipid peroxidation conditions on lipid hydroperoxide decomposition to thiobarbituric acid-reactive malondialdehyde is presented. A superoxide-dependent, iron-catalyzed peroxidation system was employed with xanthine oxidase plus hypoxanthine plus ferric iron-adenosine diphosphate complex as free radical generator. Purified cardiac membrane phospholipid (as liposomes) was the peroxidative target, and 15-hydroperoxy-eicosatetraenoic acid was used as a standard lipid hydroperoxide. Exposure of myocardial phospholipid to free radical generator at physiological pH (7.4) and temperature (37 degrees C) was found to support not only phospholipid peroxidation, but also rapid lipid hydroperoxide breakdown and consequent malondialdehyde formation during peroxidation. Under lipid peroxidation conditions, oxidative injury to the phospholipid polyunsaturated fatty acids required superoxide radical and ferric iron-adenosine diphosphate complex, whereas 37 degrees C temperature and trace iron were sufficient for lipid hydroperoxide decomposition to malondialdehyde. Harsh thiobarbituric acid-test conditions following peroxidation were not mandatory for either lipid hydroperoxide breakdown or thiobarbituric acid-reactive malondialdehyde formation. However, hydroperoxide decomposition that had begun in the peroxidation reaction could be completed during a subsequent thiobarbituric acid test in which no lipid autoxidation took place. Iron was more critical than heat in promoting the observed hydroperoxide decomposition to malondialdehyde during the lipid peroxidation reaction at 37 degrees C and pH 7.4. These data demonstrate that the radical generator, at physiological pH and temperature, serves a dual role as both initiator of membrane phospholipid peroxidation and promotor of lipid peroxide breakdown and thiobarbituric acid-reactive malondialdehyde formation.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.