The importance of circadian biology has rarely been considered in pre-clinical studies, and even more when translating to the bedside. Circadian biology is becoming a critical factor for improving drug efficacy and diminishing drug toxicity. Indeed, there is emerging evidence showing that some drugs are more effective at nighttime than daytime, whereas for others it is the opposite. This suggests that the biology of the target cell will determine how an organ will respond to a drug at a specific time of the day, thus modulating pharmacodynamics. Thus, it is now time that circadian factors become an integral part of translational research.
This composite article is intended to give the experts in the field of cochlear mechanics an opportunity to voice their personal opinion on the one mechanism they believe dominates cochlear amplification in mammals. A collection of these ideas are presented here for the auditory community and others interested in the cochlear amplifier. Each expert has given their own personal view on the topic and at the end of their commentary they have suggested several experiments that would be required for the decisive mechanism underlying the cochlear amplifier. These experiments are presently lacking but if successfully performed would have an enormous impact on our understanding of the cochlear amplifier.
Hearing is conveyed from the auditory receptors, the hair cells in the organ of Corti, to the brain via the spiral ganglion neurons. Damage or loss of either spiral ganglion neurons or hair cells causes hearing impairment. Such hearing disorders are often permanent and can be caused by therapeutic agents, such as aminoglycoside antibiotics and cisplatin, or by aging, loud sounds, infections and mechanical injury (1). Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), members of the neurotrohin family of neurotrophic factors that also include nerve growth factor (NGF) and neurotrophin-4/5 (NT-4), are important in development of the neuronal components of the inner ear. We report here that the loss of target innervation and the degeneration of approximately 90% of the adult spiral ganglion neurons caused by aminoglycoside toxicity can be prevented by infusion of the neurotrophic factor, neurotrophin-3 (NT-3) in the membranous labyrinth in guinea pigs. The potency of NT-3 in protecting spiral ganglion neurons from degenerating suggests that neurotrophins may be useful for the treatment of hearing disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.