A miniaturized organic electronic ion pump (OEIP) based on conjugated polymers is developed for delivery of positively charged biomolecules. Characterization shows that applied voltage can precisely modulate the delivery rate of the neurotransmitter acetylcholine. The capability of the device is demonstrated by convection‐free, spatiotemporally resolved delivery of acetylcholine via a 10 µm channel for dynamic stimulation of single neuronal cells.
Current technologies for cell stimulation suffer from a variety of drawbacks. Indeed, precise, localized, and minimally disruptive machine-to-cell interfacing is difficult to achieve. Here we present the organic electronic ion pump (OEIP), a polymer-based delivery system exhibiting high spatial, temporal, and dosage precision. Based on electrophoretic transport of positively charged species, the OEIP can deliver -with high precision -an array of biologically relevant substances without fluid flow, thus eliminating convective disturbance of the target system's environment. We discuss our results to date, including oscillatory delivery profiles and stimulation of neuronal cells in vitro, as well as our ongoing work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.