The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.
Poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is the most studied and explored mixed ion‐electron conducting polymer system. PEDOT:PSS is commonly included as an electroactive conductor in various organic devices, e.g., supercapacitors, displays, transistors, and energy‐converters. In spite of its long‐term use as a material for storage and transport of charges, the fundamentals of its bulk capacitance remain poorly understood. Generally, charge storage in supercapacitors is due to formation of electrical double layers or redox reactions, and it is widely accepted that PEDOT:PSS belongs to the latter category. Herein, experimental evidence and theoretical modeling results are reported that significantly depart from this commonly accepted picture. By applying a two‐phase, 2D modeling approach it is demonstrated that the major contribution to the capacitance of the two‐phase PEDOT:PSS originates from electrical double layers formed along the interfaces between nanoscaled PEDOT‐rich and PSS‐rich interconnected grains that comprises two phases of the bulk of PEDOT:PSS. This new insight paves a way for designing materials and devices, based on mixed ion‐electron conductors, with improved performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.