Optical imaging over extended periods of time in non-human primates presents serious challenges because the dura mater must be removed to expose the cortical surface. We present a novel nylon imaging chamber with a transparent artificial dura implant, which allows repeated, long-term optical recordings from the cortex. The cylinder of the chamber is inserted into a cranial trephination and held in place with a minimum of screws and acrylic cement. A round patch of artificial dura with a perpendicular wall protects the cortical surface and slows re-growth of dural tissue within the chamber. A cap, manufactured from the same material as the cylinder, is screwed into the chamber and seals it completely. Over a period of 1 -4 months, the chamber required a minimum of maintenance and stayed infection-free without local antibiotic application. We repeatedly performed optical imaging in the same animal with the advantages of shortened preparation time. To permit precise alignment and comparison of maps obtained from different imaging sessions, we developed a program that calculated a 2-dimensional spatial transformation between maps of different magnifications, translations, and distortions. We suggest that these methods provide a practical solution to long-term optical imaging in the anesthetized or alert monkey. The exclusive use of non-metallic materials offers the benefit of a lighter and more compact implant, and the possibility to perform MRI scans after chamber implantation.
While the receptive field properties of single neurons in the inferior parietal cortex have been quantitatively described from numerous electrical measurements, the visual topography of area 7a and the adjacent dorsal prelunate area (DP) remains unknown. This lacuna may be a technical byproduct of the difficulty of reconstructing tens to hundreds of penetrations, or may be the result of varying functional retinotopic architectures. Intrinsic optical imaging, performed in behaving monkey for extended periods of time, was used to evaluate retinotopy simultaneously at multiple positions across the cortical surface. As electrical recordings through an implanted artificial dura are difficult, the measurement and quantification of retinotopy with long-term recordings was validated by imaging early visual cortex (areas V1 and V2). Retinotopic topography was found in each of the three other areas studied within a single day's experiment. However, the ventral portion of DP (DPv) had a retinotopic topography that varied from day to day, while the more dorsal aspects (DPd) exhibited consistent retinotopy. This suggests that the dorsal prelunate gyrus may consist of more than one visual area. The retinotopy of area 7a also varied from day to day. Possible mechanisms for this variability across days are discussed as well as its impact upon our understanding of the representation of extrapersonal space in the inferior parietal cortex.
We studied the anatomy and physiology of neurons in monkey visual cortex, which contribute to mechanisms segregating figure and ground at contours based on information provided by occlusion cues. First, we defined the location of neurons sensitive to occluding (illusory) contours. These neurons were found most frequently in the pale cytochrome oxidase stripes of area V2 but rarely in V1. In area V2, they were found in all laminae and with similar frequencies. The few neurons recorded in area V1 concentrated in the upper laminae. Second, we studied the properties and anatomical location of neurons sensitive to occlusion cues (dark and light line-ends, corners). These neurons had end-stopped receptive fields and were found with similar frequencies in both areas. In area V1, they concentrated in the upper laminae. In area V2, they were found in all laminae and cytochrome oxidase stripes. These neurons responded to short stimuli of optimal length (bars, edges) and to stimuli terminating in their receptive field (line-ends, corners). Overall, about half of these neurons detected the direction of such terminations and about 60% were selective for certain types of termination. In summary, our results suggest that in monkey visual cortex, occlusion cues are represented in areas V1 and V2, whereas grouping mechanisms detecting occluding contours concentrate in area V2.
Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.