The cellular generation and spatial distribution of gamma frequency (40– 100 Hz) activity was examined in the hippocampus of the awake rat. Field potentials and unit activity were recorded by multiple site silicon probes (5- and 16-site shanks) and wire electrode arrays. Gamma waves were highly coherent along the long axis of the dentate hilus, but average coherence decreased rapidly in the CA3 and CA1 directions. Analysis of short epochs revealed large fluctuations in coherence values between the dentate and CA1 gamma waves. Current source density analysis revealed large sinks and sources in the dentate gyrus with spatial distribution similar to the dipoles evoked by stimulation of the perforant path. The frequency changes of gamma and theta waves positively correlated (40–100 Hz and 5–10 Hz, respectively). Putative interneurons in the dentate gyrus discharged at gamma frequency and were phase-locked to the ascending part of the gamma waves recorded from the hilus. Following bilateral lesion of the entorhinal cortex the power and frequency of hilar gamma activity significantly decreased or disappeared. Instead, a large amplitude but slower gamma pattern (25–50 Hz) emerged in the CA3-CA1 network. We suggest that gamma oscillation emerges from an interaction between intrinsic oscillatory properties of interneurons and the network properties of the dentate gyrus. We also hypothesize that under physiological conditions the hilar gamma oscillation may be entrained by the entorhinal rhythm and that gamma oscillation in the CA3-CA1 circuitry is suppressed by either the hilar region or the entorhinal cortex.
Sharp wave bursts, induced by a cooperative discharge of CA3 pyramidal cells, are the most synchronous physiological pattern in the hippocampus. In conjunction with sharp wave bursts, CA1 pyramidal cells display a high-frequency (200 Hz) network oscillation (ripple). In the present study extracellular field and unit activity was recorded simultaneously from 16 closely spaces sites in the awake rat and the intracellular activity of CA1 pyramidal cells during the network oscillation was studied under anesthesia. Current source density analysis of the high-frequency oscillation revealed circumscribed sinks and sources in the vicinity of the pyramidal layer. Single pyramidal cells discharged at a low frequency but were phase locked to the negative peak of the locally derived field oscillation. Approximately 10% of the simultaneously recorded pyramidal cells fired during a given oscillatory event. Putative interneurons increased their discharge rates during the field ripples severalfold and often maintained a 200 Hz frequency during the oscillatory event. Under urethane and ketamine anesthesia the frequency of ripples was slower (100-I 20 Hz) than in the awake rat (160-200 Hz). Halothane anesthesia prevented the occurrence of high-frequency field oscillations in the CA1 region. Both the amplitude (l-4 mV) and phase of the intracellular ripple, but not its frequency, were voltage dependent. The amplitude of intracellular ripple was smallest between-70 and-60 mV. The phase of intracellular oscillation relative to the extracellular ripple reversed when the membrane was hyperpolarized more than-60 mV. A histologically verified CA1 basket cell increased its firing rate during the network oscillation and discharged at the frequency of the extracellular ripple. These findings indicate that the intracellularly re
1. This paper describes two novel population patterns in the dentate gyrus of the awake rat, termed type 1 and type 2 dentate spikes (DS1, DS2). Their cellular generation and spatial distribution were examined by simultaneous recording of field potentials and unit activity using multiple-site silicon probes and wire electrode arrays. 2. Dentate spikes were large amplitude (2-4 mV), short duration (< 30 ms) field potentials that occurred sparsely during behavioral immobility and slow-wave sleep. Current-source density analysis revealed large sinks in the outer (DS1) and middle (DS2) thirds of the dentate molecular layer, respectively. DS1 and DS2 had similar longitudinal, lateral, and interhemispheric synchrony. 3. Dentate spikes invariably were coupled to synchronous population bursts of putative hilar interneurons. CA3 pyramidal cells, on the other hand were suppressed during dentate spikes. 4. After bilateral removal of the entorhinal cortex, dentate spikes disappeared, whereas sharp wave-associated bursts, reflecting synchronous discharge of the CA3-CA1 network, increased several fold. 5. These physiological characteristics of the dentate spikes suggest that they are triggered by a population burst of layer II stellate cells of the lateral (DS1) and medial (DS2) entorhinal cortex. 6. We suggest that dentate spike-associated synchronized bursts of hilar-region interneurons provide a suppressive effect on the excitability of the CA3-CA1 network in the intact brain.
In the behaving monkey, inferior parietal lobe cortical neurons combine visual information with eye position signals. However, an organized topographic map of these neurons' properties has never been demonstrated. Intrinsic optical imaging revealed a functional architecture for the effect of eye position on the visual response to radial optic flow. The map was distributed across two subdivisions of the inferior parietal lobule, area 7a and the dorsal prelunate area, DP. Area 7a contains a representation of the lower eye position gain fields while area DP represents the upper eye position gain fields. Horizontal eye position is represented orthogonal to the vertical eye position across the medial lateral extents of the cortices. Similar topographies were found in three hemispheres of two monkeys; the horizontal and vertical gain field representations were not isotropic with a greater modulation found with the vertical. Monte Carlo methods demonstrated the significance of the maps, and they were verified in part using multiunit recordings. The novel topographic organization of this association cortex area provides a substrate for constructing representations of surrounding space for perception and the guidance of motor behaviors.
Although there is a great deal of knowledge regarding the phylo- and ontogenetic plasticity of the neocortex, the precise nature of environmental impact on the newborn human brain is still one of the most controversial issues of neuroscience. The leading model–system of experience-dependent brain development is binocular vision, also called stereopsis. Here, we show that extra postnatal visual experience in preterm human neonates leads to a change in the developmental timing of binocular vision. The onset age of binocular function, as measured by the visual evoked response to dynamic random dot correlograms (DRDC-VEP), appears to be at around the same time after birth in preterm (4.07 mo) and full-term (3.78 mo) infants. To assess the integrity of the visual pathway in the studied infants, we also measured the latency of the visual-evoked response to pattern reversal stimuli (PR-VEP). PR-VEP latency is not affected by premature birth, demonstrating that the maturation of the visual pathway follows a preprogrammed developmental course. Despite the immaturity of the visual pathway, clearly demonstrated by the PR-VEP latencies, our DRCD-VEP data show that the visual cortex is remarkably ready to accept environmental stimulation right after birth. This early plasticity makes full use of the available extra stimulation time in preterm human infants and results in an early onset of cortical binocularity. According to our data, the developmental processes preceding the onset of binocular function are not preprogrammed, and the mechanisms turning on stereopsis are extremely experience-dependent in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.