T-box genes encode transcription factors that play critical roles in generating the vertebrate body plan. In many developmental fields, multiple T-box genes are expressed in overlapping domains, establishing broad regions in which different combinations of T-box genes are coexpressed. Here we demonstrate that three T-box genes expressed in the zebrafish mesoderm, no tail, spadetail, and tbx6, operate as a network of interacting genes to regulate region-specific gene expression and developmental fate. Loss-of-function and gain-of-function genetic analyses reveal three kinds of interactions among the T-box genes: combinatorial interactions that generate new regulatory functions, additive contributions to common developmental pathways, and competitive antagonism governing downstream gene expression. We propose that T-box genes, like Hox genes, often function within gene networks comprised of related family members.
Classical embryology experiments have indicated the existence of dorsal-type and ventral-type mesoderms that arise as a consequence of mesoderm induction during vertebrate development. Here we report that the zebrafish tbx6 gene, a member of the Brachyury-related T-box family of genes, is exclusively expressed by ventral mesendoderm. Three observations link the expression of tbx6 to ventral mesoderm specification. First, the gene is initially expressed at the onset of gastrulation within a ventrolateral subpopulation of cells that express the pan-mesodermal gene, no tail (Brachyury). Second, the mesoderm-inducing factors activin and bFGF activate tbx6 expression in animal caps. Third, dorsalization of the mesendodermal precursor population following exposure of embryos to lithium ions causes down-regulation of tbx6 transcription. tbx6 is expressed transiently in the involuting derivatives of the ventral mesendoderm, which give rise to nonaxial mesodermal tissues; its expression is extinguished as tissue differentiation progresses. Transcription of tbx6 commences about an hour after initiation of expression of the pan-mesendodermal gene no tail and the organizer gene goosecoid. The dependence of tbx6 expression on no tail activity was examined in no tail mutant embryos. The activation of tbx6 transcription in ventral mesoderm does not depend on no tail gene activity. However, no tail appears to contribute to the maintenance of normal levels of tbx6 transcription and may be required for tbx6 transcription in the developing tail.
The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141–3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood cell differentiation that appears to be limited to the region lined by the flk-1-expressing cells. The spatial restriction of blood in the ventroposterior-most region of cloche mutant embryos may be indicative of a ventral source of signal(s) controlling hematopoietic differentiation. In addition, the restricted colocalization of blood and endothelium in cloche mutants suggests that important interactions occur between these two lineages during normal development.
Bacterial wilt of forage grasses, caused by the pathogen Xanthomonas translucens pv. graminis (Xtg), is a major disease of forage grasses such as Italian ryegrass (Lolium multiflorum). The plant genotype-bacterial isolate interaction was analysed to elucidate the existence of race-specific responses and to assist the identification of plant disease resistance genes. In a greenhouse experiment, 62 selected plant genotypes were artificially inoculated with six different bacterial isolates. Significant differences in resistance were observed among L. multiflorum genotypes (P < 0AE001) and in virulence (intensity of disease symptoms) among Xtg isolates (P < 0AE001) using the area under the disease progress curve (AUDPC). No significant genotype-isolate interaction (P > 0AE05) could be observed using linear regression modelling. However, additive main effects and multiplicative interaction effects (AMMI) analysis revealed five genotypes which did not cluster close to the origin of the biplot, indicating specific interactions between these genotypes and some bacterial isolates. Simple sequence repeat (SSR) markers were used to identify marker-resistance associations using the same plant genotypes and bacterial isolates. The SSR marker NFA027 located on linkage group (LG) 5 was significantly associated with bacterial wilt resistance across all six bacterial isolates and explained up to 37AE4% of the total variance of AUDPC values. Neither the inoculation experiment nor the SSR analyses revealed major host genotype-pathogen isolate interactions, thus suggesting that Xtg resistance, observed so far, is effective across a broad range of different bacterial isolates and plant genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.