Classical embryology experiments have indicated the existence of dorsal-type and ventral-type mesoderms that arise as a consequence of mesoderm induction during vertebrate development. Here we report that the zebrafish tbx6 gene, a member of the Brachyury-related T-box family of genes, is exclusively expressed by ventral mesendoderm. Three observations link the expression of tbx6 to ventral mesoderm specification. First, the gene is initially expressed at the onset of gastrulation within a ventrolateral subpopulation of cells that express the pan-mesodermal gene, no tail (Brachyury). Second, the mesoderm-inducing factors activin and bFGF activate tbx6 expression in animal caps. Third, dorsalization of the mesendodermal precursor population following exposure of embryos to lithium ions causes down-regulation of tbx6 transcription. tbx6 is expressed transiently in the involuting derivatives of the ventral mesendoderm, which give rise to nonaxial mesodermal tissues; its expression is extinguished as tissue differentiation progresses. Transcription of tbx6 commences about an hour after initiation of expression of the pan-mesendodermal gene no tail and the organizer gene goosecoid. The dependence of tbx6 expression on no tail activity was examined in no tail mutant embryos. The activation of tbx6 transcription in ventral mesoderm does not depend on no tail gene activity. However, no tail appears to contribute to the maintenance of normal levels of tbx6 transcription and may be required for tbx6 transcription in the developing tail.
We have isolated and characterized the zebrafish ortholog of c‐ret, a gene essential for renal organogenesis and enteric nervous system development in mammals. During zebrafish embryogenesis c‐ret transcripts are expressed in a number of tissues including spinal motoneurons, pronephric ducts, cranial ganglia, pharyngeal arches, and the enteric nervous system. We have examined in detail the expression of c‐ret during the development of identified spinal primary motoneurons. c‐ret expression is regulated in a cell type‐specific manner among the three primary motoneurons. c‐ret is expressed at its highest levels in caudal primary (CaP) motoneurons and transcripts can be detected shortly before the expression of the CaP‐specific gene, islet2. We suggest that c‐ret may play a role in specifying CaP cell identity. c‐ret is expressed at low levels in the other primary motoneurons and also in a subset of secondary motoneurons, suggesting that it may also play a broader role in motoneuronal survival or maintenance. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 749–768, 1997
We have isolated and characterized the zebrafish ortholog of c-ret, a gene essential for renal organogenesis and enteric nervous system development in mammals. During zebrafish embryogenesis c-ret transcripts are expressed in a number of tissues including spinal motoneurons, pronephric ducts, cranial ganglia, pharyngeal arches, and the enteric nervous system. We have examined in detail the expression of c-ret during the development of identified spinal primary motoneurons. c-ret expression is regulated in a cell type-specific manner among the three primary motoneurons. c-ret is expressed at its highest levels in caudal primary (CaP) motoneurons and transcripts can be detected shortly before the expression of the CaP-specific gene, islet2. We suggest that c-ret may play a role in specifying CaP cell identity. c-ret is expressed at low levels in the other primary motoneurons and also in a subset of secondary motoneurons, suggesting that it may also play a broader role in motoneuronal survival or maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.