Abstract. Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. This remarkable stem cell capacity prompted an investigation of the potential of mesenchymal and hematopoietic stem cells to cure acute renal failure. The model of renal injury induced in mice by the anticancer agent cisplatin was chosen.
In this study, we investigated whether mesenchymal stem cells (MSC) had immunomodulatory properties in solid organ allotransplantation, using a semiallogeneic heart transplant mouse model, and studied the mechanism(s) underlying MSC tolerogenic effects. Either single (portal vein, day −7) or double (portal vein, day −7 and tail vein, day −1) pretransplant infusions of donor-derived B6C3 MSC in B6 recipients induced a profound T cell hyporesponsiveness and prolonged B6C3 cardiac allograft survival. The protolerogenic effect was abrogated when donor-derived MSC were injected together with B6C3 hematopoietic stem cells (HSC), suggesting that HSC negatively impact MSC immunomodulatory properties. Both the induction (pretransplant) and the maintenance phase (>100 days posttransplant) of donor-derived MSC-induced tolerance were associated with CD4+CD25+Foxp3+ Treg expansion and impaired anti-donor Th1 activity. MSC-induced regulatory T cells (Treg) were donor-specific since adoptive transfer of splenocytes from tolerant mice prevented the rejection of fully MHC-mismatched donor-specific secondary allografts but not of third-party grafts. In addition, infusion of recipient-derived B6 MSC tolerized a semiallogeneic B6C3 cardiac allograft, but not a fully MHC-mismatched BALB/c graft, and expanded Treg. A double i.v. pretransplant infusion of recipient-derived MSC had the same tolerogenic effect as the combined intraportal/i.v. MSC infusions, which makes the tolerogenic protocol applicable in a clinical setting. In contrast, single MSC infusions given either peritransplant or 1 day after transplant were less effective. Altogether these findings indicate that MSC immunomodulatory properties require HSC removal, partial sharing of MHC Ags between the donor and the recipient and pretransplant infusion, and are associated with expansion of donor-specific Treg.
We addressed the role of hyperglycemia in leukocyte-endothelium interaction under flow conditions by exposing human umbilical vein endothelial cells for 24 h to normal (5 mM), high concentration of glucose (30 mM), advanced glycosylation end product-albumin (100 microg/ml), or hyperglycemic (174-316 mg/dl) sera from patients with diabetes and abnormal hemoglobin A1c (8.1+/-1.4%). At the end of incubation endothelial cells were perfused with total leukocyte suspension in a parallel plate flow chamber under laminar flow (1.5 dyn/cm2). Rolling and adherent cells were evaluated by digital image processing. Results showed that 30 mM glucose significantly (P < 0. 01) increased the number of adherent leukocytes to endothelial cells in respect to control (5 mM glucose; 151+/-19 versus 33+/-8 cells/mm2). A similar response was induced by endothelial stimulation with IL-1beta, here used as positive control (195+/-20 cells/mm2). The number of rolling cells on endothelial surface was not affected by high glucose level. Stable adhesion of leukocytes to glucose-treated as well as to IL-1beta-stimulated endothelial cells was preceded by short interaction of leukocytes with the endothelial surface. The distance travelled by leukocytes before arrest on 30 mM glucose, or on IL-1beta-treated endothelial cells, was significantly (P < 0.01) higher than that observed for leukocytes adhering on control endothelium (30 mM glucose: 76.7+/-3.5; IL1beta: 69.7+/-4 versus 5 mM glucose: 21.5+/-5 microm). Functional blocking of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1 on endothelial cells with the corresponding mouse mAb significantly inhibited glucose-induced increase in leukocyte adhesion (67+/-16, 83+/-12, 62+/-8 versus 144+/-21 cells/ mm2). Confocal fluorescence microscopy studies showed that 30 mM glucose induced an increase in endothelial surface expression of E-selectin, intercellular cell adhesion molecule-1, and vascular cell adhesion molecule-1. Electrophoretic mobility shift assay of nuclear extracts of human umbilical vein endothelial cells (HUVEC) exposed for 1 h to 30 mM glucose revealed an intense NF-kB activation. Treatment of HUVEC exposed to high glucose with the NF-kB inhibitors pyrrolidinedithiocarbamate (100 microM) and tosyl-phe-chloromethylketone (25 microM) significantly reduced (P < 0.05) leukocyte adhesion in respect to HUVEC treated with glucose alone. A significant (P < 0.01) inhibitory effect on glucose-induced leukocyte adhesion was observed after blocking protein kinase C activity with staurosporine (5 nM). When HUVEC were treated with specific antisense oligodesoxynucleotides against PKCalpha and PKCepsilon isoforms before the addition of 30 mM glucose, a significant (P < 0.05) reduction in the adhesion was also seen. Advanced glycosylation end product-albumin significantly increased the number of adhering leukocytes in respect to native albumin used as control (110+/-16 versus 66+/-7, P < 0.01). Sera from diabetic patients significantly (P < 0.01) enhanced leukoc...
In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments with MSC and cisplatin-injured proximal tubular epithelial cells (PTEC). Exposure of PTEC to cisplatin markedly reduced cell viability at 4 days, but co-culture with MSC provided a protective effect by promoting tubular cell proliferation. This effect was mediated by insulin-like growth factor-1 (IGF-1), highly expressed by MSC as mRNA and protein, since blocking the growth factor's function with a specific antibody attenuated cell proliferation of PTEC. Confirming this, knocking down IGF-1 expression in MSC by small interfering-RNA also resulted in a significant decrease in PTEC proliferation and increased apoptosis. Furthermore, in the murine model of cisplatin-induced kidney injury, administering IGF-1 gene-silenced MSC limited their protective effect on renal function and tubular structure. These findings indicate that MSC exert beneficial effects on tubular cell repair in acute kidney injury by producing the mitogenic and pro-survival factor IGF-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.