Background:The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes.Objectives:We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed.Methods:A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella.Results:The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively.Conclusions:PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200
BackgroundEach year, the U.S. NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are used to establish population reference ranges, track exposure trends, identify population subsets with elevated exposures, and prioritize research needs. There is now interest in further utilizing the NHANES data to inform chemical risk assessments.ObjectivesThis article highlights a) the extent to which U.S. NHANES chemical biomarker data have been evaluated, b) groups of chemicals that have been studied, c) data analysis approaches and challenges, and d) opportunities for using these data to inform risk assessments.MethodsA literature search (1999–2013) was performed to identify publications in which U.S. NHANES data were reported. Manual curation identified only the subset of publications that clearly utilized chemical biomarker data. This subset was evaluated for chemical groupings, data analysis approaches, and overall trends.ResultsA small percentage of the sampled NHANES-related publications reported on chemical biomarkers (8% yearly average). Of 11 chemical groups, metals/metalloids were most frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%). Studies of multiple chemical groups were also common (8%). Publications linking chemical biomarkers to health metrics have increased dramatically in recent years. New studies are addressing challenges related to NHANES data interpretation in health risk contexts.ConclusionsThis article demonstrates growing use of NHANES chemical biomarker data in studies that can impact risk assessments. Best practices for analysis and interpretation must be defined and adopted to allow the full potential of NHANES to be realized.CitationSobus JR, DeWoskin RS, Tan YM, Pleil JD, Phillips MB, George BJ, Christensen K, Schreinemachers DM, Williams MA, Cohen Hubal EA, Edwards SW. 2015. Uses of NHANES biomarker data for chemical risk assessment: trends, challenges, and opportunities. Environ Health Perspect 123:919–927; http://dx.doi.org/10.1289/ehp.1409177
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.