Leaves and flowers begin life as outgrowths from the edges of shoot apical meristems. Stem cell divisions in the meristem center replenish cells that are incorporated into organ primordia at the meristem periphery and leave the meristem. Organ boundaries, regions of limited growth that separate forming organs from the meristem, serve to isolate these two domains and are critical for coordination of organogenesis and meristem maintenance. Boundary formation and maintenance are poorly understood processes, despite the identification of a number of boundary-specific transcription factors. Here we provide genetic and biochemical evidence that the Arabidopsis thaliana transcription factor LATERAL ORGAN BOUNDARIES (LOB) negatively regulates accumulation of the plant steroid hormone brassinosteroid (BR) in organ boundaries. We found that ectopic expression of LOB results in reduced BR responses. We identified BAS1, which encodes a BR-inactivating enzyme, as a direct target of LOB transcriptional activation. Loss-of-function lob mutants exhibit organ fusions, and this phenotype is suppressed by expression of BAS1 under the LOB promoter, indicating that BR hyperaccumulation contributes to the lob mutant phenotype. In addition, LOB expression is BR regulated; therefore, LOB and BR form a feedback loop to modulate local BR accumulation in organ boundaries to limit growth in the boundary domain.L eaves and flowers are produced from the periphery of the shoot apical meristem, a self-perpetuating structure containing a population of self-renewing stem cells. Stem cell divisions in the meristem center replenish the cells that are incorporated into organ primordia at the meristem periphery and exit the meristem (1). The balance between organogenesis and meristem maintenance is essential for continued organ formation, and the boundary between the meristem and organ primordia plays a key role in maintaining the integrity of the meristem and differentiating organs. Boundary cells are small and divide infrequently relative to cells in the adjacent regions; thus, the boundary is a discrete domain that is distinct from the meristem and organ primordia (2-4). During organ formation, inhibition of growth in the boundary allows formation of a cleft, which results in separation of the forming organ from the meristem. A number of boundary-specific transcription factors in several families act redundantly to specify organ boundary cell fate and meristem maintenance (5-11). Few targets of boundary-specific transcription factors have been identified, and little is known about the physiological and biochemical processes they regulate.Arabidopsis LATERAL ORGAN BOUNDARIES (LOB) encodes a member of the plant-specific LOB-domain transcription factor family and is expressed specifically in organ boundaries (12). To investigate the developmental function of LOB, we examined the consequence of increased and decreased LOB activity and used expression profiling to identify targets of LOB transcriptional regulation. We show that LOB negatively regulate...
Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for limiting root-knot nematode (Meloidogyne spp.) yield loss in tomato (Solanum lycopersicum), but the resistance is ineffective at soil temperatures above 28°C. Previously, we mapped the heat-stable resistance gene Mi-9 in Solanum arcanum accession LA2157 to the short arm of chromosome 6, in a genetic interval as Mi-1 and the Cladosporium fulvum resistance gene Cf2. We developed a fine map of the Mi-9 region by resistance and marker screening of an F 2 population and derived F 3 families from resistant LA2157 3 susceptible LA392. Mi-1 intron 1 flanking primers were designed to amplify intron 1 and fingerprint Mi-1 homologs. Using these primers, we identified seven Mi-1 homologs in the mapping parents. Cf-2 and Mi-1 homologs were mapped on chromosome 6 using a subset of the F 2 . Cf-2 homologs did not segregate with Mi-9 resistance, but three Mi-1 homologs (RH1, RH2, and RH4) from LA2157 and one (SH1) from LA392 colocalized to the Mi-9 region. Reverse transcriptase-polymerase chain reaction analysis indicated that six Mi-1 homologs are expressed in LA2157 roots. We targeted transcripts of Mi-1 homologs for degradation with tobacco (Nicotiana tabacum) rattle virus (TRV)-based virus-induced gene silencing using Agrobacterium infiltration with a TRV-Mi construct. In most LA2157 plants infiltrated with the TRV-Mi construct, Mi-9-meditated heat-stable root-knot nematode resistance was compromised at 32°C, indicating that the heat-stable resistance is mediated by a homolog of Mi-1.
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family encodes plant-specific transcription factors. In this report, the LBD gene DOWN IN DARK AND AUXIN1 (DDA1), which is closely related to LATERAL ORGAN BOUNDARIES (LOB) and ASYMMETRIC LEAVES2 (AS2), was characterized. DDA1 is expressed primarily in vascular tissues and its transcript levels were reduced by exposure to exogenous indole-3-acetic acid (IAA or auxin) and in response to dark exposure. Analysis of a T-DNA insertion line, dda1-1, in which the insertion resulted in misregulation of DDA1 transcripts in the presence of IAA and in the dark revealed possible functions in auxin response and photomorphogenesis. dda1-1 plants exhibited reduced sensitivity to auxin, produced fewer lateral roots, and displayed aberrant hypocotyl elongation in the dark. Phenotypes resulting from fusion of a transcriptional repression domain to DDA1 suggest that DDA1 may act as both a transcriptional activator and a transcriptional repressor depending on the context. These results indicate that DDA1 may function in both the auxin signalling and photomorphogenesis pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.