Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3' flanking region (rs165599)--both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val--had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3' SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Previous investigations have combined transcriptional and genetic analyses in human cell lines1-3, but few have applied these techniques to human neural tissue4-8. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).
73Over 100 genetic loci harbor schizophrenia associated variants, yet how these common 74 variants confer risk is uncertain. The CommonMind Consortium has sequenced dorsolateral 75 prefrontal cortex RNA from schizophrenia cases (n=258) and control subjects (n=279), creating 76 the largest publicly available resource to date of gene expression and its genetic regulation; ~5 77 times larger than the latest release of GTEx. Using this resource, we find that ~20% of the 78 schizophrenia risk loci have common variants that could explain regulation of brain gene 79 expression. In five loci, these variants modulate expression of a single gene: FURIN, TSNARE1, 80 CNTN4, CLCN3 or SNAP91. Experimentally altered expression of three of them, FURIN, 81 TSNARE1, and CNTN4, perturbs the proliferation and apoptotic index of neural progenitors and 82 leads to neuroanatomical deficits in zebrafish. Furthermore, shRNA mediated knock-down of 83 FURIN in neural progenitor cells derived from human induced pluripotent stem cells produces 84 abnormal neural migration. Although 4.2% of genes (N = 693) display significant differential 85 expression between cases and controls, 44% show some evidence for differential expression. 86All fold changes are ≤ 1.33, and an independent cohort yields similar differential expression for 87 these 693 genes (r = 0.58). These findings are consistent with schizophrenia being highly 88 polygenic, as has been reported in investigations of common and rare genetic variation. Co-89 expression analyses identify a gene module that shows enrichment for genetic associations and 90 is thus relevant for schizophrenia. Taken together, these results pave the way for mechanistic 91 interpretations of genetic liability for schizophrenia and other brain diseases. 4The human brain is complicated and not well understood. Seemingly straightforward 93 fundamental information such as which genes are expressed therein and what functions they 94 perform are only partially characterized. To overcome these obstacles, we established the 95 CommonMind Consortium (CMC; www.synpase.org/CMC), a public-private partnership to 96 generate functional genomic data in brain samples obtained from autopsies of cases with and 97 without severe psychiatric disorders. The CMC is the largest existing collection of collaborating 98 brain banks and includes over 1,150 samples. A wide spectrum of data is being generated on 99 these samples including regional gene expression, epigenomics (cell-type specific histone 100 modifications and open chromatin), whole genome sequencing, and somatic mosaicism. 101 102 Schizophrenia (SCZ), affecting roughly 0.7% of adults, is a severe psychiatric disorder 103 characterized by abnormalities in thought and cognition (1). Despite a century of evidence 104 establishing its genetic basis, only recently have specific genetic risk factors been conclusively 105identified, including rare copy number variants (2) and >100 common variants (3). However, 106 there is not a one-to-one Mendelian mapping between these SCZ ris...
The constellation of major phenomena associated with schizophrenia (e.g., postpubertal onset, congenital hippocampal area damage, cortical functional deficits, limbic dopamine (DA) dysregulation, and vulnerability to stress) have been difficult to explain with a unitary animal model. Although it has been shown that rats develop increased mesolimbic DA transmission and reduced cortical DA turnover following adult excitotoxic lesions of the ventral hippocampus (VH), the implications of early developmental VH lesions are not known. To determine the developmental sequelae of such changes, we produced ibotenic acid lesions of the ventral hippocampal formation in rats on the 7th day after birth (PD7). Motor activity in a novel environment, after saline injection and after d-amphetamine administration were similar in control and lesioned rats at PD35. However, in early adulthood, at PD56, animals with the hippocampal lesion were hyperactive in each of these conditions. The emergence of the hyperactivity at PD56 could be prevented by pretr�atment with haloperidol. Moreover, rats lesioned as nlion.(tes, in contrast to a similar lesion induced in adult animals, were also hyperresponsive to stress evaluated with a swim test. This latter effect is analogous to that seen after adult lesions of the medial prefrontal cortex, rather than after adult lesions of VH, suggesting that the neonatal VH lesion may affect functional development of the medial prefrontal cortex. These results demonstrate that in rats with neonatally induced excitotoxic VH lesions, behavioral indices consistent with increased mesolimbic DA responsivity to stressful and to pharmacologic stimuli emerge only in early adulthood. Homologous mechanisms may underlie certain aspects of the pathophysiology of schizophrenia. fNeuropsychopharmacology 9:67-75, 1993J
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.