Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3' flanking region (rs165599)--both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val--had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3' SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
High lactate generation and low glucose oxidation, despite normal oxygen conditions, are commonly seen in cancer cells and tumors. Historically known as the Warburg effect, this altered metabolic phenotype has long been correlated with malignant progression and poor clinical outcome. However, the mechanistic relationship between altered glucose metabolism and malignancy remains poorly understood. Here we show that inhibition of pyruvate dehydrogenase complex (PDC) activity contributes to the Warburg metabolic and malignant phenotype in human head and neck squamous cell carcinoma. PDC inhibition occurs via enhanced expression of pyruvate dehydrogenase kinase-1 (PDK-1), which results in inhibitory phosphorylation of the pyruvate dehydrogenase ␣ (PDH␣) subunit. We also demonstrate that PDC inhibition in cancer cells is associated with normoxic stabilization of the malignancy-promoting transcription factor hypoxia-inducible factor-1␣ (HIF-1␣) by glycolytic metabolites. Knockdown of PDK-1 via short hairpin RNA lowers PDH␣ phosphorylation, restores PDC activity, reverts the Warburg metabolic phenotype, decreases normoxic HIF-1␣ expression, lowers hypoxic cell survival, decreases invasiveness, and inhibits tumor growth. PDK-1 is an HIF-1-regulated gene, and these data suggest that the buildup of glycolytic metabolites, resulting from high PDK-1 expression, may in turn promote HIF-1 activation, thus sustaining a feed-forward loop for malignant progression. In addition to providing anabolic support for cancer cells, altered fuel metabolism thus supports a malignant phenotype. Correction of metabolic abnormalities offers unique opportunities for cancer treatment and may potentially synergize with other cancer therapies.Cancer is a disease whereby genetic mutation results in uncontrolled cell growth combined with malignancy. High lactate accumulation, despite adequate oxygen availability, is a metabolic pattern commonly associated with malignant transformation of the uncontrolled dividing cell. This metabolic phenotype, termed aerobic glycolysis and historically known as the Warburg effect, is characterized by high glycolytic rates and reduced mitochondrial oxidation (1, 2), features that may favor cell survival in the hypoxic microenvironments found in tumors. This phenotype also favors the routing of key metabolic intermediates away from oxidative destruction and toward anabolic processes required by rapidly dividing cells (2). Hypoxia and growth factors may select for this phenotype by activating hypoxia-inducible transcription factor-1 (HIF-1), 3 which induces transcription of glucose transporters, glycolytic enzymes, and many other genes associated with hypoxic survival, angiogenesis, and tissue invasion (3). Hypoxia, HIF-1 activation, and high lactate levels in tumors are all independently correlated with poor clinical outcome for many human cancers (3-5). A causative role for hypoxia and HIF-1 stabilization in tumor formation and progression has been demonstrated (reviewed in Ref. 3). However, the buildup of glycoly...
Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons vs. astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDHα). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorlyated PDHα. Dephosphorylation of astrocytic PDHα restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed.
It has been proposed that the therapeutic benefits of treatment with antidepressants and mood stabilizers may arise partially from their ability to stimulate neurogenesis. This study was designed to examine the effects of chronic antipsychotic treatment on cell proliferation and survival in the adult rat hippocampus. Haloperidol (0.05 and 2 mg/kg), clozapine (0.5 and 20 mg/kg), or vehicle were administered i.p. for 28 days, followed by bromodeoxyuridine (BrdU, 200 mg/kg, i.p.), a marker of DNA synthesis. One group of rats was killed 24 h following BrdU administration and BrdU-positive cells were quantified to assess the effects of drug treatment on cell proliferation. The remaining animals continued on antipsychotic medication for an additional 3 weeks following BrdU administration to assess the effects of antipsychotics on cell survival. Our results show that 24 h following BrdU, a low dose of clozapine (0.5 mg/kg) increased the number of BrdU-positive cells in the dentate gyrus (DG) by two-fold. Neither 20 mg/kg of clozapine nor haloperidol had any effect on cell proliferation in DG. Moreover, neither drug at either dose had an effect on the number of newly generated neurons surviving in the DG 3 weeks following BrdU administration. These preliminary findings suggest that clozapine may influence the number of cells which divide, but antipsychotics do not promote the survival of the newly generated neurons at 3 weeks after a BrdU injection.
DISC1 has been identified as a schizophrenia susceptibility gene based on linkage and SNP association studies and clinical data suggesting that risk SNPs impact on hippocampal structure and function. In cell and animal models, C-terminus-truncated DISC1 disrupts intracellular transport, neural architecture and migration, perhaps because it fails to interact with binding partners involved in neuronal differentiation such as fasciculation and elongation protein zeta-1 (FEZ1), platelet-activating factor acetylhydrolase, isoform Ib, PAFAH1B1 or lissencephaly 1 protein (LIS1) and nuclear distribution element-like (NUDEL). We hypothesized that altered expression of DISC1 and/or its molecular partners may underlie its pathogenic role in schizophrenia and explain its genetic association. We examined the expression of DISC1 and these selected binding partners as well as reelin, a protein in a related signaling pathway, in the hippocampus and dorsolateral prefrontal cortex of postmortem human brain patients with schizophrenia and controls. We found no difference in the expression of DISC1 or reelin mRNA in schizophrenia and no association with previously identified risk DISC1 SNPs. However, the expression of NUDEL, FEZ1 and LIS1 was each significantly reduced in the brain tissue from patients with schizophrenia and expression of each showed association with high-risk DISC1 polymorphisms. Although, many other DISC1 binding partners still need to be investigated, these data implicate genetically linked abnormalities in the DISC1 molecular pathway in the pathophysiology of schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.