Primary hyperoxaluria (PH) is a rare autosomal recessive disease characterized by oxalate accumulation in the kidneys and other organs. Three loci have been identified: AGXT (PH1), GRHPR (PH2), and HOGA1 (PH3). Here, we compared genotype to phenotype in 355 patients in the Rare Kidney Stone Consortium PH registry and calculated prevalence using publicly available whole-exome data. PH1 (68.4% of families) was the most severe PH type, whereas PH3 (11.0% of families) showed the slowest decline in renal function but the earliest symptoms. A group of patients with disease progression similar to that of PH3, but for whom no mutation was detected (11.3% of families), suggested further genetic heterogeneity. We confirmed that the AGXT p.G170R mistargeting allele resulted in a milder PH1 phenotype; however, other potential AGXT mistargeting alleles caused more severe (fully penetrant) disease. We identified the first PH3 patient with ESRD; a homozygote for two linked, novel missense mutations. Population analysis suggested that PH is an order of magnitude more common than determined from clinical cohorts (prevalence, approximately 1:58,000; carrier frequency, approximately 1:70). We estimated PH to be approximately three times less prevalent among African Americans than among European Americans because of a limited number of common European origin alleles. PH3 was predicted to be as prevalent as PH1 and twice as common as PH2, indicating that PH3 (and PH2) cases are underdiagnosed and/or incompletely penetrant. These results highlight a role for molecular analyses in PH diagnostics and prognostics and suggest that wider analysis of the idiopathic stone-forming population may be beneficial.
SummaryBackground and objectives Primary hyperoxaluria types I and II (PHI and PHII) are rare monogenic causes of hyperoxaluria and calcium oxalate urolithiasis. Recently, we described type III, due to mutations in HOGA1 (formerly DHDPSL), hypothesized to cause a gain of mitochondrial 4-hydroxy-2-oxoglutarate aldolase activity, resulting in excess oxalate.Design, setting, participants, & measurements To further explore the pathophysiology of HOGA1, we screened additional non-PHI-PHII patients and performed reverse transcription PCR analysis. Postulating that HOGA1 may influence urine oxalate, we also screened 100 idiopathic calcium oxalate stone formers.
ResultsOf 28 unrelated hyperoxaluric patients with marked hyperoxaluria not due to PHI, PHII, or any identifiable secondary cause, we identified 10 (36%) with two HOGA1 mutations (four novel, including a nonsense variant). Reverse transcription PCR of the stop codon and two common mutations showed stable expression. From the new and our previously described PHIII cohort, 25 patients were identified for study. Urine oxalate was lower and urine calcium and uric acid were higher when compared with PHI and PHII. After 7.2 years median follow-up, mean eGFR was 116 ml/min per 1.73 m 2 . HOGA1 heterozygosity was found in two patients with mild hyperoxaluria and in three of 100 idiopathic calcium oxalate stone formers. No HOGA1 variants were detected in 166 controls.Conclusions These findings, in the context of autosomal recessive inheritance for PHIII, support a loss-offunction mechanism for HOGA1, with potential for a dominant-negative effect. Detection of HOGA1 variants in idiopathic calcium oxalate urolithiasis also suggests HOGA1 may be a predisposing factor for this condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.