In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values in a CT image (i.e. CT number values), depending on the materials’ mass density. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT (DECT), an additional attenuation measurement is obtained with a second x-ray spectrum (i.e. a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this work, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches described. In addition, current and evolving clinical applications are introduced.
No consensus yet exists on how to handle incidental fnd‐ings (IFs) in human subjects research. Yet empirical studies document IFs in a wide range of research studies, where IFs are fndings beyond the aims of the study that are of potential health or reproductive importance to the individual research participant. This paper reports recommendations of a two‐year project group funded by NIH to study how to manage IFs in genetic and genomic research, as well as imaging research. We conclude that researchers have an obligation to address the possibility of discovering IFs in their protocol and communications with the IRB, and in their consent forms and communications with research participants. Researchers should establish a pathway for handling IFs and communicate that to the IRB and research participants. We recommend a pathway and categorize IFs into those that must be disclosed to research participants, those that may be disclosed, and those that should not be disclosed.
BACKGROUND & AIMS The risk of pancreatic cancer is increased in patients with a strong family history of pancreatic cancer or a predisposing germline mutation. Screening can detect curable, non-invasive pancreatic neoplasms, but the optimal imaging approach is not known. We determined the baseline prevalence and characteristics of pancreatic abnormalities using 3 imaging tests to screen asymptomatic, high-risk individuals (HRI). METHODS We screened 225 asymptomatic adult HRI at 5 academic US medical centers once, using computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasonography (EUS). We compared results in a blinded, independent fashion. RESULTS Ninety-two of 216 HRI (42%) were found to have at least 1 pancreatic mass (84 cystic, 3 solid) or a dilated pancreatic duct (n=5) by any of the imaging modalities. Fifty-one of the 84 HRI with a cyst (60.7%) had multiple lesions, typically small (mean 0.55 cm, range 2–39 mm), in multiple locations. The prevalence of pancreatic lesions increased with age; they were detected in 14% of subjects <50 years old, 34% of subjects 50–59 years old, and 53% of subjects 60–69 years old (P<.0001). CT, MRI, and EUS detected a pancreatic abnormality in 11%, 33.3%, and 42.6% of the HRI, respectively. Among these abnormalities, proven or suspected neoplasms were identified in 85 HRI (82 intraductal papillary mucinous neoplasms [IPMN] and 3 pancreatic endocrine tumors). Three of 5 HRI who underwent pancreatic resection had high-grade dysplasia in <3 cm IPMNs and in multiple intraepithelial neoplasias. CONCLUSIONS Screening of asymptomatic HRI frequently detects small pancreatic cysts, including curable, non-invasive high-grade neoplasms. EUS and MRI detect pancreatic lesions better than CT.
Computed tomographic (CT) enterography combines the improved spatial and temporal resolution of multi-detector row CT with large volumes of ingested neutral enteric contrast material to permit visualization of the small bowel wall and lumen. Adequate luminal distention can usually be achieved with oral hyperhydration, thereby obviating nasoenteric intubation and making CT enterography a useful, well-tolerated study for the evaluation of diseases affecting the mucosa and bowel wall. Unlike routine CT, which has been used to detect the extraenteric complications of Crohn disease such as fistula and abscess, CT enterography clearly depicts the small bowel inflammation associated with Crohn disease by displaying mural hyperenhancement, stratification, and thickening; engorged vasa recta; and perienteric inflammatory changes. As a result, CT enterography is becoming the first-line modality for the evaluation of suspected inflammatory bowel disease. CT enterography has also become an important alternative to traditional fluoroscopy in the assessment of other small bowel disorders such as celiac sprue and small bowel neoplasms.
Photon-counting detector (PCD) CT is an emerging technology that has shown tremendous progress in the last decade. Various types of PCD CT systems have been developed to investigate the benefits of this technology, which include reduced electronic noise, increased contrast-to-noise ratio with iodinated contrast material and radiation dose efficiency, reduced beam-hardening and metal artifacts, extremely high spatial resolution (33 line pairs per centimeter), simultaneous multienergy data acquisition, and the ability to image with and differentiate among multiple CT contrast agents. PCD technology is described and compared with conventional CT detector technology. With the use of a whole-body research PCD CT system as an example, PCD technology and its use for in vivo high-spatial-resolution multienergy CT imaging is discussed. The potential clinical applications, diagnostic benefits, and challenges associated with this technology are then discussed, and examples with phantom, animal, and patient studies are provided. ©
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.