In the past decade, the tremendous advances in computed tomography (CT) technology and applications have increased the clinical utilization of CT, creating concerns about individual and population doses of ionizing radiation. Scanner manufacturers have subsequently implemented several options to appropriately manage or reduce the radiation dose from CT. Modulation of the x-ray tube current during scanning is one effective method of managing the dose. However, the distinctions between the various tube current modulation products are not clear from the product names or descriptions. Depending on the scanner model, the tube current may be modulated according to patient attenuation or a sinusoidal-type function. The modulation may be fully preprogrammed, implemented in near-real time by using a feedback mechanism, or achieved with both preprogramming and a feedback loop. The dose modulation may occur angularly around the patient, along the long axis of the patient, or both. Finally, the system may allow use of one of several algorithms to automatically adjust the current to achieve the desired image quality. Modulation both angularly around the patient and along the z-axis is optimal, but the tube current must be appropriately adapted to patient size for diagnostic image quality to be achieved.
Quantitative measures of mural attenuation and wall thickness at CT enterography correlate highly with ileoscopic and histologic findings of inflammatory Crohn disease. Quantitative measures of mural attenuation are sensitive markers of small bowel inflammation.
In addition to existing strategies for reducing radiation dose in computed tomographic (CT) examinations, such as the use of automatic exposure control, use of the optimal tube potential also may help improve image quality or reduce radiation dose in pediatric CT examinations. The main benefit of the use of a lower tube potential is that it provides improved contrast enhancement, a characteristic that may compensate for the increase in noise that often occurs at lower tube potentials and that may allow radiation dose to be substantially reduced. However, selecting an appropriate tube potential and determining how much to reduce radiation dose depend on the patient's size and the diagnostic task being performed. The power limits of the CT scanner and the desired scanning speed also must be considered. The use of a lower tube potential and the amount by which to reduce radiation dose must be carefully evaluated for each type of examination to achieve an optimal tradeoff between contrast, noise, artifacts, and scanning speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.