Photon-counting detector (PCD) CT is an emerging technology that has shown tremendous progress in the last decade. Various types of PCD CT systems have been developed to investigate the benefits of this technology, which include reduced electronic noise, increased contrast-to-noise ratio with iodinated contrast material and radiation dose efficiency, reduced beam-hardening and metal artifacts, extremely high spatial resolution (33 line pairs per centimeter), simultaneous multienergy data acquisition, and the ability to image with and differentiate among multiple CT contrast agents. PCD technology is described and compared with conventional CT detector technology. With the use of a whole-body research PCD CT system as an example, PCD technology and its use for in vivo high-spatial-resolution multienergy CT imaging is discussed. The potential clinical applications, diagnostic benefits, and challenges associated with this technology are then discussed, and examples with phantom, animal, and patient studies are provided. ©
With respect to 2D-GRE, 3D-SE-EPI has the advantage of lower failure rate with equivalent high diagnostic performance for staging liver fibrosis in CHB/CHC patients, and thus more helpful for those challenging cases in 2D-GRE.
Objective The aim of this study was to quantitatively demonstrate radiation dose reduction for sinus and temporal bone examinations using high-resolution photon-counting detector (PCD) computed tomography (CT) with an additional tin (Sn) filter. Materials and Methods A multienergy CT phantom, an anthropomorphic head phantom, and a cadaver head were scanned on a research PCD-CT scanner using ultra-high-resolution mode at 100-kV tube potential with an additional tin filter (Sn-100 kV) and volume CT dose index of 10 mGy. They were also scanned on a commercial CT scanner with an energy-integrating detector (EID) following standard clinical protocols. Thirty patients referred to clinically indicated sinus examinations, and two patients referred to temporal bone examinations were scanned on the PCD-CT system after their clinical scans on an EID-CT. For the sinus cohort, PCD-CT scans were performed using Sn-100 kV at 4 dose levels at 10 mGy (n = 9), 8 mGy (n = 7), 7 mGy (n = 7), and 6 mGy (n = 7), and the clinical EID-CT was performed at 120 kV and 13.7 mGy (mean CT volume dose index). For the temporal bone scans, PCD-CT was performed using Sn-100 kV (10.1 mGy), and EID-CT was performed at 120 kV and routine clinical dose (52.6 and 66 mGy). For both PCD-CT and EID-CT, sinus images were reconstructed using H70 kernel at 0.75-mm slice thickness, and temporal bone images were reconstructed using a U70 kernel at 0.6-mm slice thickness. In addition, iterative reconstruction with a dedicated sharp kernel (V80) was used to obtain high-resolution PCD-CT images from a sinus patient scan to demonstrate improved anatomic delineation. Improvements in spatial resolution from the dedicated sharp kernel was quantified using modulation transfer function measured with a wire phantom. A neuroradiologist assessed the H70 sinus images for visualization of critical anatomical structures in low-dose PCD-CT images and routine-dose EID-CT images using a 5-point Likert scale (structural detection obscured and poor diagnostic confidence, score = 1; improved anatomic delineation and diagnostic confidence, score = 5). Image contrast and noise were measured in representative regions of interest and compared between PCD-CT and EID-CT, and the noise difference between the 2 acquisitions was used to estimate the dose reduction in the sinus and temporal bone patient cohorts. Results The multienergy phantom experiment showed a noise reduction of 26% in the Sn-100 kV PCD-CT image, corresponding to a total dose reduction of 56% compared with EID-CT (clinical dose) without compromising image contrast. The PCD-CT images from the head phantom and the cadaver scans demonstrated a dose reduction of 67% and 83%, for sinus and temporal bone examinations, respectively, compared with EID-CT. In the sinus cohort, PCD-CT demonstrated a mean dose reduction of 67%. The 10- and 8-mGy sinus patient images from PCD-CT were significantly superior to clinical EID-CT for visualization of critical sinus structures (median score = 5 ± 0.82 and P = 0.01 for lesser palatine foramina, median score = 4 ± 0.68 and P = 0.039 for nasomaxillary sutures, and median score = 4 ± 0.96 and P = 0.01 for anterior ethmoid artery canal). The 6- and 7-mGy sinus patient images did not show any significant difference between PCD-CT and EID-CT. In addition, V80 (sharp kernel, 10% modulation transfer function = 18.6 cm−1) PCD-CT images from a sinus patient scan increased the conspicuity of nasomaxillary sutures compared with the clinical EID-CT images. The temporal bone patient images demonstrated a dose reduction of up to 85% compared with clinical EID-CT images, whereas visualization of inner ear structures such as the incudomalleolar joint were similar between EID-CT and PCD-CT. Conclusions Phantom and cadaver studies demonstrated dose reduction using Sn-100 kV PCD-CT compared with current clinical EID-CT while maintaining the desired image contrast. Dose reduction was further validated in sinus and temporal bone patient studies. The ultra-high resolution capability from PCD-CT allowed improved anatomical delineation for sinus imaging compared with current clinical standard.
Purpose To describe a model-based reconstruction strategy for routine magnetic resonance imaging (MRI) that accounts for gradient nonlinearity (GNL) during rather than after transformation to the image domain, and demonstrate that this approach reduces the spatial resolution loss that occurs during strictly image-domain GNL-correction. Methods After reviewing conventional GNL-correction methods, we propose a generic signal model for GNL-affected MRI acquisitions, discuss how it incorporates into contemporary image reconstruction platforms, and describe efficient non-uniform fast Fourier transform (NUFFT)-based computational routines for these. The impact of GNL-correction on spatial resolution by the conventional and proposed approaches is investigated on phantom data acquired at varying offsets from gradient isocenter, as well as on fully-sampled and (retrospectively) undersampled in vivo acquisitions. Results Phantom results demonstrate that resolution loss that occurs during GNL-correction is significantly less for the proposed strategy than for the standard approach at distances >10 cm from isocenter with a 35 cm FOV gradient coil. The in vivo results suggest that the proposed strategy better preserves fine anatomical detail than retrospective GNL-correction while offering comparable geometric correction. Conclusion Accounting for GNL during image reconstruction allows geometric distortion to be corrected with less spatial resolution loss than is typically observed with the conventional image domain correction strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.