ScopeCholesterol homeostasis is crucial for brain functioning. Unhealthy nutrition can influence cerebral physiology, but the effect of western diets on brain cholesterol homeostasis, particularly at middle age, is unknown. Given the link between brain cholesterol alteration and beta amyloid production, the aim is to evaluate whether a diet rich in fat and fructose affects the protein network implicated in cholesterol synthesis and shuttling between glial cells and neurons, as well as crucial markers of beta amyloid metabolism.Methods and resultsMiddle aged rats are fed a high fat–high fructose (HFF) or a control diet for 4 weeks. Inflammatory markers and cholesterol levels significantly increase in hippocampus of HFF rats. A higher activation of 3‐hydroxy 3‐methylglutaryl coenzyme‐A reductase, coupled with lower levels of apolipoprotein E, LXR‐beta, and lipoproteins receptors is measured in hippocampus from HFF rats. The alteration of critical players of cholesterol homeostasis is associated with increased level of amyloid precursor protein, presenilin 1, and nicastrin, and decreased level of insulin degrading enzyme.ConclusionsOverall these data show that a western diet is associated with perturbation of cholesterol homeostasis in middle aged rats, mostly in hippocampus. This might trigger molecular events involved in the onset of neurodegenerative diseases.
Bi-allelic hypomorphic mutations inDNMT3Bdisrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient–derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whetherDNMT3Bcorrection can globally overcome DNA methylation defects and related changes in the epigenome. Hypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying differentDNMT3Bvariants, and significantly overlap with those in ICF1 patient peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are premarked during early development. CRISPR-corrected ICF1 iPSCs reveal that the majority of phenotype-related hypomethylated regions reacquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increases in H3K4me3 levels and/or abnormal CTCF binding, the epigenetic memory persists, and hypomethylation remains uncorrected. Overall, we demonstrate that restoring the catalytic activity of DNMT3B can reverse the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this rescue, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.
BackgroundBi-allelic hypomorphic mutations in DNMT3B disrupt DNA methyltransferase activity and lead to Immunodeficiency, Centromeric instability, Facial anomalies syndrome, type 1 (ICF1). While several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-induced pluripotent stem cells (iPSCs) and their CRISPR/Cas9 corrected clones to determine whether gene correction can overcome DNA methylation defects and related/associated changes in the epigenome of non-repetitive regions.ResultsHypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying different DNMT3B variants, and significantly overlap with those in ICF1-peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are pre- marked during early development. The gene corrected ICF1 iPSCs reveal that the majority of phenotype- related hypomethylated regions re-acquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increased H3K4me3 levels and enrichment of CTCF-binding motifs, the epigenetic memory persisted, and hypomethylation was uncorrected.ConclusionsRestoring the catalytic activity of DNMT3B rescues the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this reversal, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.