The molecular programs involved in regulatory T (T reg ) cell activation and homeostasis remain incompletely understood. Here, we show that T cell receptor (TCR) signaling in T reg cells induces the nuclear translocation of serine/threonine kinase 4 (Stk4), leading to the formation of an Stk4–NF-κB p65–Foxp3 complex that regulates Foxp3- and p65-dependent transcriptional programs. This complex was stabilized by Stk4-dependent phosphorylation of Foxp3 on serine-418. Stk4 deficiency in T reg cells, either alone or in combination with its homolog Stk3, precipitated a fatal autoimmune lymphoproliferative disease in mice characterized by decreased T reg cell p65 expression and nuclear translocation, impaired NF-κB p65–Foxp3 complex formation, and defective T reg cell activation. In an adoptive immunotherapy model, overexpression of p65 or the phosphomimetic Foxp3 S418E in Stk3/4-deficient T reg cells ameliorated their immune regulatory defects. Our studies identify Stk4 as an essential TCR-responsive regulator of p65-Foxp3–dependent transcription that promotes T reg cell–mediated immune tolerance.
Bi-allelic hypomorphic mutations inDNMT3Bdisrupt DNA methyltransferase activity and lead to immunodeficiency, centromeric instability, facial anomalies syndrome, type 1 (ICF1). Although several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient–derived induced pluripotent stem cells (iPSCs) and their CRISPR-Cas9-corrected clones to determine whetherDNMT3Bcorrection can globally overcome DNA methylation defects and related changes in the epigenome. Hypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying differentDNMT3Bvariants, and significantly overlap with those in ICF1 patient peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are premarked during early development. CRISPR-corrected ICF1 iPSCs reveal that the majority of phenotype-related hypomethylated regions reacquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increases in H3K4me3 levels and/or abnormal CTCF binding, the epigenetic memory persists, and hypomethylation remains uncorrected. Overall, we demonstrate that restoring the catalytic activity of DNMT3B can reverse the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this rescue, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.
BackgroundBi-allelic hypomorphic mutations in DNMT3B disrupt DNA methyltransferase activity and lead to Immunodeficiency, Centromeric instability, Facial anomalies syndrome, type 1 (ICF1). While several ICF1 phenotypes have been linked to abnormally hypomethylated repetitive regions, the unique genomic regions responsible for the remaining disease phenotypes remain largely uncharacterized. Here we explored two ICF1 patient-induced pluripotent stem cells (iPSCs) and their CRISPR/Cas9 corrected clones to determine whether gene correction can overcome DNA methylation defects and related/associated changes in the epigenome of non-repetitive regions.ResultsHypomethylated regions throughout the genome are highly comparable between ICF1 iPSCs carrying different DNMT3B variants, and significantly overlap with those in ICF1-peripheral blood and lymphoblastoid cell lines. These regions include large CpG island domains, as well as promoters and enhancers of several lineage-specific genes, in particular immune-related, suggesting that they are pre- marked during early development. The gene corrected ICF1 iPSCs reveal that the majority of phenotype- related hypomethylated regions re-acquire normal DNA methylation levels following editing. However, at the most severely hypomethylated regions in ICF1 iPSCs, which also display the highest increased H3K4me3 levels and enrichment of CTCF-binding motifs, the epigenetic memory persisted, and hypomethylation was uncorrected.ConclusionsRestoring the catalytic activity of DNMT3B rescues the majority of the aberrant ICF1 epigenome. However, a small fraction of the genome is resilient to this reversal, highlighting the challenge of reverting disease states that are due to genome-wide epigenetic perturbations. Uncovering the basis for the persistent epigenetic memory will promote the development of strategies to overcome this obstacle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.