Even if nephrotic syndrome is characterized by massive urinary loss of major plasma proteins, a clear structural characterization based on proteomics has never been reported. Urine and plasma of 23 patients with different idiopathic nephrotic syndromes (10 steroid-sensitive minimal-change nephropathy, seven steroid-resistant FSGS, and six membranous glomerulonephritis) were analyzed with two-dimensional electrophoresis in soft gel, Western blot, and matrix-assisted laser desorption/ionization time of flight mass spectrometry; 72 urinary components corresponded to fragments of albumin and/or of ␣1-antitrypsin. Several repetitive fragmentation motives and a few differences among different pathologies were found. Several (21 of 72) urinary albumin fragments also were detected in plasma, although in lower concentration, suggesting a preferential excretion. The bulk of components with low molecular weight were detected only in urine, suggesting an in situ formation; zymograms with albumin as substrate showed the presence in urine of specific proteases. A final but not secondary point was the characterization of albumin adducts that harbor both the COOH and NH2 terminal parts of the protein, suggesting the formation of new covalent chemical groups. Altogether, these new findings reveal unexpected structural and functional aspects of proteinuria that may play a key role in pathogenesis. Characterization of urinary fragmentation patterns should be extended to other renal diseases.
The basic mechanism for idiopathic FSGS still is obscure. Indirect evidence in humans and generation of FSGS by oxidants in experimental models suggest a role of free radicals. In vitro studies demonstrate a main role of plasma albumin as antioxidant, its modification representing a chemical marker of oxidative stress. With the use of complementary liquid chromatography electron spray ionization tandem mass spectrometry (LC-ESI-MS/MS) and biochemical methods, plasma albumin was characterized in 34 patients with FSGS; 18 had received a renal transplant, and 17 had IgM mesangial deposition. Patients with FSGS that was in remission or without recurrence after transplantation had normal plasma albumin, and the same occurred in patients with primary and secondary nephrites and with chronic renal failure. In contrast, patients with active FSGS or with posttransplantation recurrence had oxidized plasma albumin. This finding was based on the characterization of albumin Cys 34 with an mass-to-charge ratio of 511.71 in triple charge that was consistent with the formation of a cysteic acid carrying a sulfonic group (alb-SO 3 ؊ ). The exact mass of albumin was increased accordingly (؉48 Da) for incorporation of three oxygen radicals. Direct titration of the free sulfhydryl group 34 of plasma albumin and electrophoretic titration curves confirmed loss of free sulfhydryl group and formation of a fast-moving isoform in all cases with disease activity. This is the first demonstration of in vivo plasma albumin oxidation that was obtained with an adequate structural approach. Albumin oxidation seems to be specific for FSGS, suggesting some pathogenetic implications. Free radical involvement in FSGS may lead to specific therapeutic interventions.
Protein-adsorptive properties are a key feature of membranes used for haemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with chemical feature of the membrane surfaces. Dialyzers composed of either cellulose triacetate (Sureflux 50 L, effective surface area 0.5 m(2); Nipro Corporation, Japan) or the polysulfone-based helixone (FX40, effective surface area 0.4 m(2); Fresenius Medical Care AG, Germany) materials were employed to develop an ex vivo apparatus to study protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by a proteomic approach. The profiling strategy was based on 2D-electrophoresis separation of desorbed protein coupled to MALDI-TOF/TOF analysis. The total protein adsorption was not significantly different between the two materials. An average of 179 protein spots was visualised for helixone membranes while a map of retained proteins of cellulose triacetate membranes was made up of 239 protein spots. The cellulose triacetate material showed a higher binding capacity for albumin and apolipoprotein. In fact, a number of different protein spots belonging to the gene transcript of albumin were visible in the cellulose triacetate map. In contrast, helixone bound only a small proportion of albumin, while proved to be particularly active in retaining protein associated with the coagulation cascade, such as the fibrinogen isoforms. Our data indicate that proteomic techniques are a useful approach for the investigation of proteins surface-adsorbed onto haemodialysis membranes, and may provide a molecular base for the interpretation of the efficacy and safety of anticoagulation treatment during renal replacement therapy.
Protein-adsorptive properties are a key feature of membranes used for hemodialysis treatment. Protein adsorption is vital to the biocompatibility of a membrane material and influences membrane's performance. The object of the present study is to investigate membrane biocompatibility by correlating the adsorbed proteome repertoire with structural feature of the membrane surfaces. Minidialyzers of identical structural characteristics composed of either cellulose diacetate or ethylenevinyl alcohol materials were employed to develop an ex vivo apparatus to investigate protein adsorption. Adsorbed proteins were eluted by a strong chaotropic buffer condition and investigated by 2-DE coupled to both MALDI-TOF mass spectrometry (MS) mass fingerprinting and fragmentation analysis on a nanoLC-MS/MS hybrid instrument. Membrane surface characterization included evaluation of roughness (atomic force microscopy), elemental chemical composition (X-ray-photoelectron-spectroscopy), and hydrophilicity (pulsed nuclear magnetic resonance). The present study identifies a number of different proteins as common or characteristic of filter material interaction, showing that proteomic techniques are a promising approach for the investigation of proteins surface-adsorbed onto hemodialysis membrane. Proteomic analysis enables the characterization of protein layers of unknown composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.