1 The dispersal mode adopted by a plant species is frequently associated with other attributes of the plant and its habitat. In this paper we review these associations and present a set of hypotheses which, when considered together, make a probabilistic prediction of the dispersal mode adopted by a plant species. When applied to a species list, the hypotheses can be used to generate a prediction of its dispersal spectrum, i.e. the percentages of different dispersal modes that have been adopted. 2 The formulation of such a set of hypotheses has several purposes: (i) to summarize existing knowledge about dispersal adaptations and their interrelations with other attributes of plants and their habitats; (ii) to couch that knowledge in such a way that falsifiable predictions can be made; (iii) to arrive at provisional conclusions about which factors are the most important in shaping the evolution of dispersal mode in different plants or different environments. 3 The review of relationships between dispersal mode and other attributes of plants and their habitats lead to the following provisional conclusions; (i) seeds larger than 100 mg tend to be adapted for dispersal by vertebrates while those smaller than 0.1 mg tend to be unassisted; most seeds, however, are between 0.1 and 100 mg, and in this range all of the dispersal modes are feasible; (ii) plant growth form and stature (sometimes in relation to the canopy height of the vegetation) seem to exclude certain dispersal modes; (iii) the availability of specific dispersal vectors seems rarely to be an important determinant of dispersal mode; (iv) attributes of the physical environment also seem rarely to be important, except indirectly through their influence on plant stature and seed size.
Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.
. We compare the dispersal spectra of diaspores from varied plant communities in Australia, New Zealand, and North America, assigning dispersal mode to each diaspore type on the basis of apparent morphological adaptations. Species with ballistic and external dispersal modes were uncommon in most communities we surveyed. Ant dispersal was also rather uncommon, except in some Australian sclerophyll vegetation types. The frequency of vertebrate dispersal ranged up to 60% of the flora, the highest frequencies occurring in New Zealand forests. Wind dispersal ranged as high as 70% of the flora, with the highest values in Alaska, but usually comprised 10–30% of the flora. Many species in most communities had diaspores with no special morphological device for dispersal. Physiognomically similar vegetation types indifferentbiogeographic regions usually had somewhat dissimilar dispersal spectra. The frequency of dispersal by vertebrates often increased and the frequency of species with no special dispersal device decreased along gradients of increasing vertical diversity of vegetation structure. Elevation and moisture gradients also exhibited shifts in dispersal spectra. Within Australia, vertebrate‐ and wind‐dispersal increased in frequency along a soil‐fertility gradient, and dispersal by ants and by no special device decreased. Habitat breadths (across plant communities) and microhabitat breadths (within communities) for species of each major dispersal type did not show consistent differences, in general. Ant‐dispersed species often had lower cover‐values than other species in several Australian vegetation types. We discuss the ecological bases of these differences in dispersal spectra in terms of the availability of dispersal agents, seed size, and other ecological constraints. Seed size is suggested to be one ecological factor that is probably of general relevance to the evolution of dispersal syndromes.
The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost ∼250 mg bone calcium per day during flight and regained bone calcium at a slower rate of ∼100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.