BACKGROUNDUp to 5% of patients with chronic myelogenous leukemia (CML) do not have the Philadelphia (Ph) translocation t(9;22)(q34;q11) or a bcr/abl molecular rearrangement. Although the diagnostic criteria of this entity are still under debate, there is general agreement that patients with Ph negative, bcr/abl negative CML have a severe clinical course that is not affected significantly by current treatment options.METHODSA population of 76 patients with bcr/abl negative CML who had received minimal or no previous therapy was characterized carefully with the intent of investigating clinical and hematologic variables and their association with survival by univariate, correlation, and multivariate analyses. A group of 73 patients with Ph negative CML who were not tested for the bcr/abl rearrangement (bcr/abl unknown) was analyzed separately and used for extension of the analysis.RESULTSIn the bcr/abl negative patient population, the median overall survival was 24 months. At the time of the analysis, 38 patients (50%) had died, and blastic transformation preceded death in 31%. Chromosomal abnormalities were found in 30% of the 76 patients, with trisomy 8 the most common abnormality. Complex chromosomal abnormalities were rare, and monosomy 7 was not observed. Survival was not affected significantly by treatment. Multivariate analysis identified older age (> 65 years), anemia (hemoglobin < 10 g/dL), and severe leukocytosis (white blood cells > 50 × 109/L) as variables with independent prognostic significance for poor survival. A prognostic scoring system stratified patients into a low‐risk group (53%) and a high‐risk group (47%), with median survivals of 38 months and 9 months, respectively.CONCLUSIONSBcr/abl negative CML is a distinct clinical entity associated with very poor prognosis. Two risk categories are identifiable using a simple scoring system based on age, hemoglobin level, and leukocyte number. Cancer 2002;95:1673–84. © 2002 American Cancer Society.DOI 10.1002/cncr.10832
Mutations in CCAAT/enhancer binding protein α (CEBPA) occur in 5–10% of cases of acute myeloid leukemia. CEBPA-double-mutated cases usually bear biallelic N- and C-terminal mutations and are associated with a favorable clinical outcome. Identification of CEBPA mutants is challenging because of the variety of mutations, intrinsic characteristics of the gene and technical issues. Several screening methods (fragment-length analysis, gene expression array) have been proposed especially for large-scale clinical use; although efficient, they are limited by specific concerns. We investigated the phenotypic profile of blast and maturing bone marrow cell compartments at diagnosis in 251 cases of acute myeloid leukemia. In this cohort, 16 (6.4%) patients had two CEBPA mutations, whereas ten (4.0%) had a single mutation. First, we highlighted that the CEBPA-double-mutated subset displays recurrent phenotypic abnormalities in all cell compartments. By mutational analysis after cell sorting, we demonstrated that this common phenotypic signature depends on CEBPA-double-mutated multi-lineage involvement. From a multidimensional study of phenotypic data, we developed a classifier including ten core and widely available parameters. The selected markers on blasts (CD34, CD117, CD7, CD15, CD65), neutrophil (SSC, CD64), monocytic (CD14, CD64) and erythroid (CD117) compartments were able to cluster CEBPA-double-mutated cases. In a validation set of 259 AML cases from three independent centers, our classifier showed excellent performance with 100% specificity and 100% sensitivity. We have, therefore, established a reliable screening method, based upon multidimensional analysis of widely available phenotypic parameters. This method provides early results and is suitable for large-scale detection of CEBPA-double-mutated status, allowing gene sequencing to be focused in selected cases.
BACKGROUND Although various mechanisms have been recognized as being associated with the development of resistance to imatinib mesylate in vitro and in clinical situations, their relative significance and contributions remain poorly understood, as is the sequence of events leading to the selection of the resistant phenotype. Experimental in vitro systems involving well defined cell lines and conditions can be used to some advantage to answer specific questions and to develop in vitro models of imatinib resistance that would reflect its potential heterogeneity. METHODS Two cell lines, KBM5 and KBM7, which expressed p210 Bcr/Abl and which differed in their inherent sensitivity to imatinib, the number of copies of the BCR/ABL fusion gene, and the activation of apoptotic pathways, were grown in vitro in the presence of increasing concentrations of imatinib. The resistant cells were analyzed for cell cycle progression, apoptotic response after exposure to imatinib, expression of Bcr/Abl, tyrosine kinase activity, and the presence of mutations within the adenosine triphosphate (ATP) coding domain of BCR/ABL. At various levels of resistance, the cells were transferred into drug‐free media, and the stability of the resistant phenotype was determined in the absence of the drug. RESULTS In KBM7 cells, the development of resistance was characterized by loss of apoptotic response to the drug, amplification of BCR/ABL, increased levels of expression of p210 Bcr/Abl, and decreased inhibition of Bcr/Abl tyrosine kinase (TK) activity by imatinib. No mutations within the ATP‐binding domain of Bcr/Abl were identified, and resistance remained stable in the absence of the drug. In KBM5 cells, which previously were found to be characterized by the acquisition of a single C‐T mutation at ABL nucleotide 944 (T315I) at high levels of resistance, this same mutation was detected at an intermediate level, but not at a low level, of resistance. The response of KBM5 cells to imatinib was characterized by a low level of apoptotic response, a marginal increase in BCR/ABL copy number, a modest increase in p210 expression, and a highly imatinib‐resistant Bcr/Abl TK. Partial reversal of resistance was observed in highly resistant KBM5‐STI571R1.0 cells, which continued to display the C‐T mutation. In KBM5 cells with an intermediate level of resistance, the T315I mutation was no longer detectable upon their reversal to the sensitive phenotype. CONCLUSIONS BCR/ABL amplification with subsequent overexpression of Bcr/Abl protein, loss of apoptotic response, or point mutation of the ATP‐binding site of BCR/ABL was associated alternatively with the acquisition of the resistant phenotype, supporting the notion that multiple mechanisms are involved in the induction of resistance to imatinib. The initial number of BCR/ABL copies itself was not related directly to the degree of resistance. The reversibility of the resistance may be complete, partial, or irreversible, depending on the mechanism(s) involved and the degree of resistance. Both cell lin...
Secondary acute myeloid leukemia (sAML) poorly responds to conventional treatments and allogeneic stem cell transplantation (HSCT). We evaluated toxicity and efficacy of CPX-351 in 71 elderly patients (median age 66 years) with sAML enrolled in the Italian Named (Compassionate) Use Program. Sixty days treatment-related mortality was 7% (5/71). The response rate at the end of treatment was: CR/CRi in 50/71 patients (70.4%), PR in 6/71 (8.5%), and NR in 10/71 (19.7%). After a median follow-up of 11 months relapse was observed in 10/50 patients (20%) and 12 months cumulative incidence of relapse (CIR) was 23.6%. Median duration of response was not reached. In competing risk analysis, CIR was reduced when HSCT was performed in first CR (12 months CIR of 5% and 37.4%, respectively, for patients receiving (=20) or not (=30) HSCT, p = 0.012). Twelve-months OS was 68.6% (median not reached). In landmark analysis, HSCT in CR1 was the only significant predictor of longer survival (12 months OS of 100 and 70.5%, for patients undergoing or not HSCT in CR1, respectively, p = 0.011). In conclusion, we extend to a real-life setting, the notion that CPX is an effective regimen for high risk AML patients and may improve the results of HSCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.