The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation.
Background:The TRPV1 ion channel can be regulated by negatively charged lipids. Results: TRPV1 shows specificity for LPA analogs containing monounsaturated hydrocarbon chains with a negatively charged phosphate, cyclic phosphate, and thiophosphate headgroup. Conclusion: TRPV1 activation is highly restricted to natural lipids with oleyl or oleoyl side chains. Significance: Production of endogenous C18:1 lysophospholipids can selectively trigger activation of TRPV1 and nociceptive neuronal responses.
Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.
BackgroundThe Xenopus oocyte is a useful cell model to study Ca2+ homeostasis and cell cycle regulation, two highly interrelated processes. Here, we used antisense oligonucleotides to investigate the role in the oocyte of stromal interaction molecule (STIM) proteins that are fundamental elements of the store-operated calcium-entry (SOCE) phenomenon, as they are both sensors for Ca2+ concentration in the intracellular reservoirs as well as activators of the membrane channels that allow Ca2+ influx.ResultsEndogenous STIM1 and STIM2 expression was demonstrated, and their synthesis was knocked down 48–72 h after injecting oocytes with specific antisense sequences. Selective elimination of their mRNA and protein expression was confirmed by PCR and Western blot analysis, and we then evaluated the effect of their absence on two endogenous responses: the opening of SOC channels elicited by G protein-coupled receptor (GPCR)-activated Ca2+ release, and the process of maturation stimulated by progesterone. Activation of SOC channels was monitored electrically by measuring the Tin response, a Ca2+-influx-dependent Cl− current, while maturation was assessed by germinal vesicle breakdown (GVBD) scoring and electrophysiology.ConclusionsIt was found that STIM2, but not STIM1, was essential in both responses, and Tin currents and GVBD were strongly reduced or eliminated in cells devoid of STIM2; STIM1 knockdown had no effect on the maturation process, but it reduced the Tin response by 15 to 70%. Thus, the endogenous SOCE response in Xenopus oocytes depended mainly on STIM2, and its expression was necessary for entry into meiosis induced by progesterone.Electronic supplementary materialThe online version of this article (doi:10.1186/s12899-014-0009-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.