Idebenone (IDE) is an antioxidant drug active at the level of the central nervous system (CNS), whose poor water solubility limits its clinical application. An IDE/2-hydroxypropyl-β-cyclodextrin (IDE/HP-β-CD) inclusion complex was investigated by combining experimental methods and theoretical approaches. Furthermore, biological in vitro/ex vivo assays were performed. Phase solubility studies showed an AL type diagram, suggesting the presence of a 1:1 complex with high solubility. Scanning electron microscopy (SEM) allowed us to detect the morphological changes upon complexation. The intermolecular interactions stabilizing the inclusion complex were experimentally characterized by exploring the complementarity of Fourier-transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR) with mid-infrared light, Fourier-transform near-infrared (FT-NIR) spectroscopy, and Raman spectroscopy. From the temperature evolution of the O–H stretching band of the complex, the average enthalpy ΔHHB of the hydrogen bond scheme upon inclusion was obtained. Two-dimensional (2D) rotating frame Overhauser effect spectroscopy (ROESY) analysis and computational studies involving molecular modeling and molecular dynamics (MD) simulation demonstrated the inclusion of the quinone ring of IDE inside the CD ring. In vitro/ex vivo studies evidenced that complexation produces a protective effect of IDE against the H2O2-induced damage on human glioblastoma astrocytoma (U373) cells and increases IDE permeation through the excised bovine nasal mucosa.
The aim of this study is to evaluate the difference in the number of endothelial cells after cataract operations with phacoemulsification by using a balanced salt solution (BSS) at standard temperature (about 20 °C) and at 2.7 °C. Two groups, comprising 214 individuals in total, participated in this study; patients were operated on using BSS bottle at about 20 °C and 2.7 °C in the first and second groups, respectively. All operations were conducted by the same surgeon and in similar conditions. One month after the operations, endothelial cells in the two groups were checked. For patients in Group 2, an important reduction in the loss of endothelial cells was observed.
We propose here a spectroscopic method to diagnose and differentiate inflammatory bowel diseases (IBD), such as ulcerative colitis (UC) and Crohn’s disease (CD) with pediatric onset, in a complete noninvasive way without performing any duodenal biopsy. In particular, the Raman technique was applied to proteic extract from fecal samples in order to achieve information about molecular vibrations that can potentially furnish spectral signatures of cellular modifications occurring as a consequence of specific pathologic conditions. The attention was focused on the investigation of the amide I region, quantitatively accounting the spectral changes in the secondary structures by applying deconvolution and curve-fitting. Inflammation is found to give rise to a significant increasing of the nonreducible (trivalent)/reducible (divalent) cross-linking ratio R of the protein network. This parameter revealed an excellent marker in order to distinguish IBD subjects from non-IBD ones, and, among IBD patients, to differentiate between UC and CD. The proposed methodology was validated by statistical analysis using the receiver operating characteristic (ROC) curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.