Uveal melanoma (UM) represents the most frequent primary tumor of the eye. Despite the development of new drugs and screening programs, the prognosis of patients with UM remains poor and no effective prognostic biomarkers are yet able to identify high-risk patients. Therefore, in the present study, microRNA (miRNA or miR) expression data, contained in the TCGA UM (UVM) database, were analyzed in order to identify a set of miRNAs with prognostic significance to be used as biomarkers in clinical practice. Patients were stratified into 2 groups, including tumor stage (high-grade vs. low-grade) and status (deceased vs. alive); differential analyses of miRNA expression among these groups were performed. A total of 20 deregulated miRNAs for each group were identified. In total 7 miRNAs were common between the groups. The majority of common miRNAs belonged to the miR-506-514 cluster, known to be involved in UM development. The prognostic value of the 20 selected miRNAs related to tumor stage was assessed. The deregulation of 12 miRNAs (6 upregulated and 6 downregulated) was associated with a worse prognosis of patients with UM. Subsequently, miRCancerdb and microRNA Data Integration Portal bioinformatics tools were used to identify a set of genes associated with the 20 miRNAs and to establish their interaction levels. By this approach, 53 different negatively and positively associated genes were identified. Finally, DIANA-mirPath prediction pathway and Gene Ontology enrichment analyses were performed on the lists of genes previously generated to establish their functional involvement in biological processes and molecular pathways. All the miRNAs and genes were involved in molecular pathways usually altered in cancer, including the mitogen-activated protein kinase (MAPK) pathway. Overall, the findings of the presents study demonstrated that the miRNAs of the miR-506-514 cluster, hsa-miR-592 and hsa-miR-199a-5p were the most deregulated miRNAs in patients with high-grade disease compared to those with low-grade disease and were strictly related to the overall survival (OS) of the patients. However, further in vitro and translational approaches are required to validate these preliminary findings.
Betula etnensis Raf. (Birch Etna) belonging to the Betulaceae family grows on the eastern slope of Etna. Many bioactive compounds present in Betula species are considered promising anticancer agents. In this study, we evaluated the effects of B. etnensis Raf. bark methanolic extract on a human colon cancer cell line (CaCo2). In order to elucidate the mechanisms of action of the extract, cellular redox status, cell cycle, and heme oxygenase-1 (HO-1) expression in ferroptosis induction were evaluated. Cell viability and proliferation were tested by tetrazolium (MTT) assayand cell cycle analysis, while cell death was evaluated by annexin V test and lactic dehydrogenase (LDH) release. Cellular redox status was assessed by measuring thiol groups (RSH) content, reactive oxygen species (ROS) production, lipid hydroperoxide (LOOH) levels and (γ-glutamylcysteine synthetase) γ-GCS and HO-1 expressions. The extract significantly reduced cell viability of CaCo2, inducing necrotic cell death in a concentration-depending manner. In addition, an increase in ROS levels and a decrease of RSH content without modulation in γ-GCS expression were detected, with an augmentation in LOOH levels and drastic increase in HO-1 expression. These results suggest that the B. etnensis Raf. extract promotes an oxidative cellular microenvironment resulting in CaCo2 cell death by ferroptosis mediated by HO-1 hyper-expression.
Anthocyanins are a class of flavonoids, widely spread throughout the plant kingdom, exhibiting important antioxidant and anti-inflammatory actions as well as chemotherapeutic effects; nonetheless, little is known about the molecular mechanisms by which these activities are exerted. The present study is aimed at investigating molecular mechanisms involved in the chemotherapeutic effects induced by both cyanidin-3-O-b glucopyranoside (CY3G) and its aglycon form, cyanidin chloride (CY), in human colon cancer cells (CaCo2). The effect on cell growth, reactive oxygen species (ROS) formation and cell cycle/stress proteins modification, including ataxia teleangectasia mutated protein (ATM), p53, p21, 8-oxoguanine DNA glycosylase (OGG1), 70 kDa heat shock protein (HSP70) and topoisomerase IIb, as well as on DNA fragmentation, was determined. CY and CY3G treatment affect cell growth and cell proliferation, this latter in a moderately dose-dependent way. Interestingly, ROS level is decreased by any concentration of CY and, only at the lowest concentration, by CY3G. Moreover, the two molecules exert their activities increasing ATM, topoisomerase II, HSP70 and p53 expression. The analysis of DNA fragmentation by Comet assay evidences: (1) a dose-dependent increase in DNA damage only after treatment with CY3G; (2) a more evident trend in the DNA fragmentation when the treatment is performed on agarose embedded cells (cellular atypical Comet); (3) a highly dose-dependent DNA fragmentation induced by CY when the treatment is carried out on agarose embedded naked DNA (acellular atypical Comet). The present findings substantiate a possible chemotherapeutic role of anthocyanins and suggest that CY and CY3G act on CaCo2 by different mechanisms, respectively, ROS-dependent and ROS-independent.
Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.
Abstract. Physical activity offers a paradoxical hormetic effect and a health benefit to cancer survivors; however, the biochemical mechanisms have not been entirely elucidated. Despite the well-documented evidence implicating oxidative stress in breast cancer, the association between health benefits and redox status has not been investigated in survivors who participate in dragon boating. The present study investigated the plasmatic systemic oxidative status (SOS) in breast cancer survivors involved in two distinct physical training exercises. A total of 75 breast cancer survivors were allocated to one of three groups: Control (resting), dragon boat racing and walking group; the latter is a type of aerobic conditioning exercise often advised to cancer patients. �arious biochemical oxida-. �arious biochemical oxidative stress markers were examined, including oxidant status (hydroperoxide levels, lipid oxidation) and antioxidant status (enzymatic activities of superoxide dismutase and glutathione peroxidase, reduced glutathione levels and antioxidant capability). In addition, the individual DNA fragmentation and DNA repair capability of nucleotide excision repair (NER) systems were examined by comet assays. According to the results, all patients exhibited high levels of oxidative stress. Physical activity maintained this oxidative stress condition but simultaneously had a positive influence on the antioxidant component of the SOS, particularly in the dragon boat racing group. DNA fragmentation, according to the levels of singleand double-strand breaks, were within the normal range in the two survivor groups that were involved in training activities. Radiation-induced damage was not completely recognised or repaired by NER systems in any of the patients, probably leading to radiosensitivity and/or susceptibility of patients to cancer. These findings suggest that physical activity, particularly dragon boat racing, that modulates SOS and DNA repair capability could represent a strategy for enhancing the quality of life and improving the long-term health benefits for breast cancer survivors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.